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Abstract 
Our digital products can be 

configured, controlled and 

monitored through a digital serial 

interface using the PMBus™ power 

management protocol. This 

application note provides an 

introduction to the serial bus 

interface of the our digital products 

and accessing the products using a 

general purpose microcontroller. This 

application note is not a detailed 

tutorial on the PMBus power 

management protocol. It is 

recommended that you study the 

SMBus and PMBus specification 

documents before attempting to 

access our digital product via the 

serial bus interface. While it is 

possible to write firmware for the 

microcontroller that creates a serial 

bus by “bit banging” general 

purpose I/O pins, this is not 

recommended. It is highly 

recommended that the user choose 

a microcontroller that includes a 

hardware implementation of an I²C 

or SMBus interface. For such an 

interface, the programmer is 

generally only concerned with 

transferring data to and from 

transmit and receive buffers and 

monitoring flags for the status of the 

data transmission. The details of 

working with a microcontroller’s I²C 

or SMBus interface are dependent 

on the microcontroller being used 

and are not discussed in this 

application note. This application 

note will assume that a 

microcontroller with a hardware I²C 

or SMBus port is being used. 
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Introduction 
Flex Power Modules digital products are designed 

with state-of-the-art digital controllers. This provides 

the user with superior electrical performance and a 

broad capability to configure, control and monitor 

the products in the engineering lab, in the factory, 

and in the field.  

This capability is provided by the use of the open-

standard PMBus™ digital power management 

protocol. The PMBus protocol was created by the 

System Management Interface Forum (SMIF) and 

Power Management Bus (PMBus) Implementers 

Forum to standardize communication with a wide 

range of power conversion devices. The resulting 

PMBus standard is written in two parts.  

The first, “Specification Part I – General 

Requirements Transport and Electrical Interface”, 

specifies the transport including the physical layer, 

addressing, and packet structure.  

The second, “Specification Part II – Command 

Language”, specifies the command language to 

be used when communicating with PMBus 

compliant devices.  

The PMBus specifications are freely available at the 

PMBus website 

In addition to the capabilities provided by the 

PMBus, some of Flex Power Modules’ digital PoL 

regulators feature the Group Command Bus (GCB). 

The GCB is an inter-device communication bus 

that provides additional capabilities like digital 

current sharing and fault propagation 

management.  

This document, to be used in conjunction with the 

PMBus specifications and the Datasheets for each 

product, describes how to interface a 

microcontroller based system controller to the Flex 

Power Modules digital bus converters and 

regulators. The focus of this document is more on 

the issues involved in programming the 

microcontroller than in the details of the physical 

layer and bit-by-bit operation of the bus.  

This application note is applicable for all of our 

digital products. 

Figure 1b: digital IBC -  BMR351  

Figure 1a:  digital PoL -  BMR473 

Figure 1c: digital PoL -  BMR469 

http://www.pmbus.org
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Forum websites  

The System Management Interface 
Forum (SMIF)  

The System Management Interface Forum (SMIF) 

supports the rapid advancement of an efficient 

and compatible technology base that promotes 

power management and systems technology 

implementations. The SMIF provides a membership 

path for any company or individual to be active 

participants in any or all of the various working 

groups established by the implementer forums. 

 

Power Management Bus 
Implementers Forum (PMBUS-IF) 

The PMBus-IF supports the advancement and early 

adoption of the PMBus protocol for power 

management. This website offers recent PMBus 

specification documents, PMBus articles, as well as 

upcoming PMBus presentations and seminars, 

PMBus Document Review Board (DRB) meeting 

notes, and other PMBus related news.  

 

 

PMBus – power 
system manage-
ment bus protocol 
documents  
These specification documents may be obtained 

from the PMBus-IF website described above. These 

are required reading for complete understanding 

of the PMBus implementation. This application note 

will not re-address all of the details contained 

within the two PMBus Specification documents.  

 

 

 

 

Specification Part I – General Requirements 

Transport And Electrical Interface 

Includes the general requirements, defines the 

transport and electrical interface and timing 

requirements of hardwired signals.  

Specification Part II – Command Language 

Describes the operation of commands, data 

formats, fault management and defines the 

command language used with the PMBus.  

 

 

SMBus – system 
management bus 
documents  

System Management Bus 
Specification, version 3.2, Jan 2022  

This specification specifies the version of the SMBus 

on which Revision 1.4 of the PMBus Specification is 

based. This specification is freely available from the 

System Management Interface Forum Web site.  

 

http://www.powersig.org/
https://pmbus.org/
http://www.smbus.org/specs/
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SMBus basics  

Introduction 

We start with an introduction to the SMBus because 

the PMBus protocol is based on SMBus Version 3.2. 

The PMBus protocol does have some unique 

extensions to the SMBus interface that will be 

discussed later. 

The SMBus is a two wire serial bus with electrical 

characteristics very similar to the I²C bus invented 

by Philips. If you are familiar with using a 

microcontroller to manage I²C devices then you 

will have little difficulty accessing our digital 

products via the serial bus interface. 

SMBus signals 

The SMBus has two required signal wires. SMBCLK is 

the clock signal that is generated only by the Main 

(Master) bus device. SMBDATA is a bi-directional 

signal that is used to transfer data between the 

Main and the Secondary (Slave) devices. For our 

digital products, these signals are identified as SCL 

and SDA, respectively. 

The SMBus specification also includes an interrupt 

signal, SMBALERT#, that a Secondary device can 

use to notify the Main bus device that it has 

information for the Main bus unit. This is used by the 

digital products and is identified on the product 

technical specifications as SALERT. A description of 

the operation of the alert signal is given below. 

PHY layer and electrical interface 

The SMBus physical layer is very similar to, but not 

identical to, the physical layer of the I²C bus. For 

most purposes, SMBus and I²C devices are 

interoperable on the same bus. For the details of 

the electrical levels and signal timing, please refer 

to the SMBus specification, .System Management 

Bus Specification, Version 3.2, Jan, 2022. 

The SMBus, like the I²C bus, uses open drain devices 

to drive the signal lines. One pull-up resistor is 

needed for each signal line. It is recommended 

that the pull-up resistor be placed at the Main bus 

device. The value of the pull-up resistor depends 

on supply voltage and the number of devices on 

the bus. See the SMBus specification for information 

on choosing the proper value of the pull-up resistor. 

Make sure that the rise and fall times of the bus 

signals are compliant with the SMBus specification. 

Improper rise and fall times are one of the most 

common causes of unreliable bus operation. 

Some microcontrollers offer the option of 

configuring the serial bus port for I²C or SMBus 

signal levels. If the microcontroller being used offers 

this option, configure the serial bus pins for the 

SMBus signal levels. 

Addressing 

The SMBus specification, like the I²C specification, 

provides for each device to have a seven bit 

physical address. Each device on the bus must 

have a unique address. It is left to the system 

engineer to assure that there are no address 

conflicts. 

Our DC/DC products use resistors to program the 

bus address of each device. The device address is 

not configurable through the serial bus interface. 

Consult the datasheet for the digital product being 

used for the details on setting the device’s bus 

address. 

Transaction basics 

In most microcontrollers with I²C and SMBus 

interfaces, the details of the transaction are 

invisible to the programmer. The programmer 

simply reads and writes data from buffers and 

monitors flags for data transmission status. 

However, we will provide here a short discussion of 

the how data is sent and received over the bus. 

This understanding will be helpful when working 

with more complex commands and data. 

http://www.smbus.org/specs/index.html
http://www.smbus.org/specs/index.html
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The Main bus initiates a transaction by placing a 

START condition on the bus. This alerts all of the 

Secondary devices to start listening. 

After the START condition the Main transmits a 

seven bit address followed by an eighth bit that 

indicates whether the Main will be writing or 

reading data from the Secondary device. 

Each Secondary device compares its address to 

the address just received. If there is a match, the 

device acknowledges its address with an ACK 

condition on the bus. When the Main device 

detects the ACK it proceeds with the rest of the 

data transaction. 

During the transmission of data the receiving 

device must either acknowledge the byte with an 

ACK or tell the sender that there was a problem by 

not acknowledging (NACK) the byte. 

The exception is the case where data is being 

transferred to the Main bus device. Upon receiving 

the last data byte, the Main bus does not 

acknowledge (‘NACKs’) the byte.  

The transaction is completed when the Main bus 

puts a STOP condition on the bus. The bus is then 

considered free (not busy) after a specified 

minimum delay time after the STOP condition. 

Bit and bytes – the data link layer 

Bits and data validity 

Figure 1 below shows how bits are transmitted on 

the SMBus. 

The Main bus device always drives the clock (SCL) 

line. When the Main pulls the clock line low, it is 

notifying the sending device that the next bit is to 

be placed on the data line.  

Note that the sending device may be a Secondary 

device transferring data to the Main bus or it may 

be the Main bus writing data to a Secondary 

device. The data line is allowed to change state 

only during the time that the clock is low. 

The Main bus then allows the clock line to go high. 

This signals the receiving device that the next bit is 

ready to be read from the data line. During the 

time that the clock is high, the data line must not 

change state. 

START, ACK, NACK and STOP conditions. 

Transactions on the SMBus are initiated when the 

Main bus puts a START condition on the bus and 

are ended when the Main bus puts a STOP 

condition on the bus. 

Figure 2 shows a SMBus start condition. Initially, the 

bus is idle with both the clock and data lines high 

for minimum specified amount of time (see the 

SMBus specification for the details). The Main then 

pulls the data line low while the clock is high. This 

signals all devices on the bus that a transaction is 

about to start. 

Once the START condition has been placed on the 

bus, the Main continues to toggle the clock line to 

control the transfer of bits. Figure 3 shows the 

transfer of the first data byte. The Main device 

keeps toggling the clock to cause the transfer of 

the eight bits in the byte.  

Figure 2: SMBus bit transfer 

Figure 3: SMBus START condition 
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Then the Main lowers the clock for a ninth bit. If the 

receiving device has received the byte it pulls the 

data line low during the ninth clock period. This 

acknowledges (ACKs) to the sending device that 

the byte was received and that the transaction 

can continue. 

NACK (Not Acknowledge) 

If the receiving device did not successful receive 

the byte, it does not pull the data line low during 

the ninth bit. This lack of acknowledgement 

(NACK) notifies the sending device that the byte 

was not successfully received. In this case, the 

sending device typically ends the transaction and 

initiates its programmed error response and 

recovery function. Figure 4 shows a data byte that 

ends with a NACK. 

Other than a Main device not acknowledging the 

last data byte of a read from a Secondary device 

as described below, each byte should be 

acknowledged. A device may not acknowledge a 

byte for one of several different reasons.  

Possible reasons include the device being too busy 

to respond or the device considers the data to be 

invalid. 

There is no direct way to know why a device 

NACK’ed a data byte. The digital regulators and 

bus converters, through the comprehensive status 

and fault reporting in the PMBus protocol 

specification, can provide the Main bus 

information that will generally let the Main know 

why a data byte was NACK’ed.  

 

Figure 4: SMBus byte transfer with acknowledge 

Figure 5: SMBus data byte without acknowledge 
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STOP condition 

A Main device notifies all devices on the bus that 

the current transaction is complete by placing a 

STOP condition on the bus. Figure 5 shows STOP 

condition after an ACK of the last data byte of the 

transaction. After the ACK, when the data line is 

low, the Main continues to hold both the data and 

clock lines low. It then releases the clock line and 

allows it to go high. After a time interval specified in 

the SMBus specification, the Main allows the data 

line to go high. Again, the transition of the data line 

while the clock is high, which is not allowed during 

the normal transmission of the data bits, signals to 

all devices on the bus that the transaction is 

complete. At this point the bus is again idle with 

both the clock and data lines high. 

In some cases the STOP condition will be issued 

after the last data byte is not acknowledged 

(NACK’ed). In this case the data line is high during 

the ninth clock period. After the ninth clock period 

is complete, the Main pulls the clock line and the 

data line low. The Main then releases the clock line 

and allows it to go high. After the specified delay 

time, the Main releases the data line and allows it 

to go high. This STOP condition signals to all of the 

devices on the bus that the current transaction is 

complete. Figure 6 shows the clock and data 

signals when a STOP condition is put on the bus 

after a NACK. 

Is should be noted that a Main may put a STOP 

condition on the bus at any time, not just at the 

end of a data byte. While this is an abnormal 

condition, it is permitted by the SMBus 

specification.  

 

 

Clock stretching 

There may be occasions when a device involved in 

a SMBus transaction may want to pause the 

transaction. For example, a device that just 

received a data byte may want to check that 

received data byte is valid. A Secondary device 

being asked to supply data may need extra time 

to retrieve that data from a relatively slow EEPROM 

memory. 

The SMBus specification allows for a device to 

pause a transaction by holding the clock line low. 

This stops the bus until the clock line is allowed to 

go high. This is called “clock stretching”. This 

practice is discouraged as a matter of good 

system practice but may be unavoidable. Any 

device acting as a Main bus must be prepared to 

accept clock stretching by a Secondary device. 

Figure 7 illustrates how clock stretching by a 

Secondary device works and how it can cause 

problem for a Main bus that is not SMBus 

compliant. In this case the Main bus is sending 

data to the Secondary device. After the eighth bit, 

the Secondary device needs time to validate the 

data in the byte and decide whether to ACK or 

NACK. After the Main lowers the clock to end the 

eighth bit, the Secondary device turns on its clock 

output to hold the clock line low and to pause the 

bus. Since the clock and data outputs on SMBus 

devices are open-drain, any device that turns on 

its clock or data output will hold that signal line low. 

Figure 6: STOP condition after ACK 

Figure 7: STOP condition after a NACK 
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The Main bus, in its normal timing cycle, turns off its 

clock output for the ninth (acknowledge) bit. 

However, because the Secondary device is 

holding the clock line low, the clock line does not 

go high. For a Main device that cannot handle 

clock stretching by a Secondary device, this would 

be an error condition. That Main would typically 

terminate the transaction and set an error flag. 

For a Main bus device that is compatible with 

clock stretching by a Secondary device, it will 

leave its clock output off and wait. One the 

Secondary device releases the clock line and the 

clock goes high, the Main bus reads the data line 

to determine if the Secondary device has ACK’ed 

or NACK’ed the data byte. In Figure 7 the 

Secondary device has ACK’ed the data byte and 

the Main bus continues with sending the next byte 

of data. 

The best way to avoid problems with clock 

stretching by Secondary devices is to make sure 

that the Main bus device is fully compliant to the 

SMBus specification. It is up to the system engineer 

for the system to assure that any microcontroller 

used as a Main bus is SMBus compliant and will 

accept clock stretching by a Secondary device. 

The alternative, which is not recommended, is to 

use bit banged general purpose I/O pins for the 

SMBus interface. 

Bus timeout limits 

While the SMBus specification allows for clock 

stretching, it does not allow for an unlimited 

pausing of the bus. The details are important so it is 

recommended that you carefully study the SMBus 

specification. 

In general, during one bus transaction, a 

Secondary device may not extend the clock by 

total cumulative time of more than 25 ms 

(TLOW:SEXT). 

Main bus devices are not permitted to extend the 

clock low by more than 10 ms in any one byte 

(TLOW:MEXT). 

The SMBus specification also requires that a Main 

bus device that detects that the clock has been 

held low for more than 25 ms (TTIMEOUT,MIN) must 

put a STOP condition on the bus during or just after 

the current data byte. Any device that has 

detected an excessive clock low time are required 

to reset their communications controller and be 

ready to receive a new START condition within 35 

ms (TTIMEOUT,MAX).  

This is an important feature of the SMBus. While it 

cannot recover from all faults, such as a clock line 

with an electrical short to ground, it can help 

recover a bus that has become stuck due to 

software, logic, or even some noise errors. 

This is in contrast to the I²C bus which a clock line 

held low indefinitely is a valid condition (minimum 

clock speed is 0 Hz). 

And again, it is best that these timing details are 

handled in the hardware of an I/O port that is fully 

compliant with the SMBus specification. 

 

SMBus data transfer protocols 

Information is transmitted in atomic transactions. 

SMBus transactions are completed only through 

one of several formats defined in the SMBus 

specification. This is different from the I²C 

specification which does not address how data is 

to be transferred between devices on the bus. For 

a complete list of the permitted transactions see 

the SMBus Specification (Version 3.2). 

Only the Main bus may initiate a transaction and 

all commands and data are transferred in a 

continuous transaction. The bus remains busy until 

the transaction is complete. 

Figure 8: Clock stretching by a SMBus Secondary device 
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Bit and byte order 

In a SMBus transaction, the bytes are transmitted 

starting with the lowest order byte and ending 

within the highest order byte. 

For example, suppose the data to be transmitted 

was decimal value 31899 which can be 

represented by the two byte hexadecimal value 

0x7C9B. When the device sending the data 

queues the bytes for transmission the byte 0x9B 

would be sent first, followed by the byte 0x7C. 

Note that within the data byte, the data is written 

with the most significant bit first. 

WRITE BYTE protocol example 

To illustrate how SMBus transactions work, consider 

Figure 8 which illustrates the SMBus WRITE BYTE 

protocol. This protocol is used by the Main bus 

device to write a single byte of data to a 

Secondary device. 

The transaction proceeds as follows: 

• The Main device puts a START condition on 

the bus to notify the Secondary devices that 

a transaction is beginning. 

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 0 (to indicate that this 

will be a transaction in which the Main writes 

data to the Secondary device). 

 

 

• The receiving device acknowledges its 

address and that it is ready to receive data 

(ACK). 

• The Main device sends the data byte. 

• The receiving device ACKs the received 

data byte. 

• The Main device puts a STOP condition on 

the bus to notify the Secondary devices that 

the transaction is complete. 

 

From the programmer’s point of view, all that is 

needed is to prepare the first byte with the address 

and READ/WRITE# bit and the data byte. These are 

passed to the hardware I²C or SMBus interface in 

accordance with the microcontroller’s 

specification.  

READ WORD protocol example 

Figure 9 illustrates the SMBus READ WORD protocol 

that a Main device uses to read two bytes of data 

from a Secondary device. 

 

 

Figure 9: SMBus WRITE BYTE protocol 

Figure 10: SMBus READ WORD protocol 
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The READ WORD protocol transaction with packet 

error checking proceeds as follows: 

• The Main device puts a START condition on 

the bus to notify the Secondary devices that 

a transaction is beginning. 

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 1 (to indicate that this 

will be a transaction in which the Main reads 

data from the Secondary device). 

• The receiving device acknowledges its 

address and that it is ready to send data 

(ACK). 

• The Secondary device sends the first data 

byte. Remember that if this is a 16 bit value, 

this is the lower order byte. 

• The Main bus ACKs the received data byte. 

• The Secondary device sends the second 

data byte. Remember that if this is a 16 bit 

value, this is the higher order byte. 

• The Main device does not acknowledge 

(“NACKs”) the received packet error 

checking data. 

• The Main device puts a STOP condition on 

the bus to notify the Secondary devices that 

the transaction is complete.  
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PMBus data 
formats 
Before discussing how commands are sent to a 

digital product over the PMBus, it is important to 

understand the formats of the data being written 

to or read from a digital product. 

The data for a PMBus command used with a digital  

product may be one of three formats: 

• 16 bit linear for output voltage related 
commands 

• 11 bit linear for other numerical values, and 

• Custom formats for commands with non-
numerical data (such as commands that set 
the response to a given type of fault). 

16 bit linear for output voltage 
related commands 

The PMBus specification describes three different 

possible formats for the data used in commands 

that send or receive data related to setting or 

adjusting the output voltage.  

The VOUT_MODE command specifies the format in 

use. 

The 16 bit Linear Format is not used for commands 

that set fault or warning thresholds related to the 

output voltage. The 11 bit Linear Format (described 

below) is used to set the fault and warning 

threshold values. 

The digital regulators and converters use the Linear 

format, which is a 16 bit fixed point integer 

representation. This 16 bit data provides for the 

very fine resolution needed to set and adjust the 

voltage on today’s high performance logic and 

processors. 

The commands that use this format and whether 

the data is unsigned or two’s complement is listed 

in Table 1. 

In the PMBus specification all output voltages are 

treated as positive and commands that directly set 

the output voltage, such as VOUT_COMMAND, are 

unsigned.  

Commands that modify the output voltage, such 

as VOUT_TRIM, are signed so that the voltage can 

be increased or decreased. 

Command name Command description Data format 

VOUT_COMMAND Sets the nominal output voltage Unsigned 

VOUT_TRIM Used to trim or adjust the output voltage Two’s complement 

VOUT_CAL_OFFSET Used to calibrate the output voltage Two’s complement 

VOUT_MAX Sets the maximum nominal voltage to which 

the output can be programmed. This 

command is typically used to prevent 

unintentionally programming the voltage to a 

level that could damage the load. 

Unsigned 

VOUT_MARGIN_HIGH Sets the output voltage when the regulator or 

converter is commanded to margin the 

output voltage to a greater than the nominal 

value. 

Unsigned 

VOUT_MARGIN_LOW Sets the output voltage when the regulator or 

converter is commanded to margin the 

output voltage to a less than the nominal 

value. 

Unsigned 

READ_VOUT Returns the actual, measured output voltage Unsigned 

Table 1: Output voltage related commands and data formats 
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Data format for digital PoL regulators 

Data format 

For the digital PoL regulators, the VOUT_MODE command is read only. This means that the fixed point 

format (location of the binary point) is fixed and cannot be changed for the user. 

For commands that directly set the output voltage, the data is a 16 bit unsigned value in the format 

F3.13 (F means unsigned fixed point, there are three bits to the left of the binary point and 13 bits to the 

right of the binary point). 

For commands that modify the output voltage, the data is a 16 bit two’s complement value. 

Example 1: Setting the output voltage 

Suppose the output is to be set to 3.3 V. The command to use is VOUT_COMMAND. The data that goes 

with that command would be determined as follows: 

 

 

Remembering that in the SMBus protocols the low bytes are transmitted first, the Main would send 0x9A 

as the first data byte and 0x69 as the second data byte.  

Example: 2: Trimming the output voltage 

Suppose now that the output voltage is be reduced by 50 mV using the VOUT_TRIM command. The 

data bytes would be determined as follows: 

Command name Command description Range and resolution 

VOUT_COMMAND F3.13 (Unsigned, 3 bits to the left of the binary 

point, 13 bits to the right of the binary point) 

 

Resolution (1 LSB): 122.07 µV/bit 

(2-13 V/bit) 

Maximum Value: 7.99987793 V 

(0xFFFF) 

(= (216 – 1)·× 1 LSB = 8 V – 1 LSB) 

VOUT_TRIM Q2.13 (Two’s complement, 1 sign bit plus 2 bits 

to the left of the binary point, 13 bits to the 

right of the binary point) 

 

Resolution (1 LSB): 122.07 μV/bit (2-13 

V/bit) 

Maximum Positive Value: 

3.99987793 V (0x7FFF) 

(= (215 – 1)·× 1 LSB = 4 V – 1 LSB) 

Most Negative Value: -4.0 V 

(0x8000) 

(= -215 × 1 LSB)  

 

Table 2: Output voltage related commands and range & resolution  
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Again, as the low bytes are sent first, the Main would send 0x66 as the first data byte and 0xFE as the 

second data byte. 

Data format for the digital Intermediate Bus Converters 

Data Format 

For the digital intermediate bus converters, the VOUT_MODE command is read only. This means that the 

fixed point format (location of the binary point) is fixed and cannot be changed for the user. For 

commands that directly set the output voltage, the data is a 16 bit unsigned value in the format F5.11 (F 

means unsigned fixed point, there are five bits to the left of the binary point and 11 bits to the right of 

the binary point). 

For commands that modify the output voltage, the data is a 16 bit two’s complement value. 

Example 1: Setting the output voltage 

Suppose the output of a BMR4530000/002 (nominal 9 V output) is to be set to 9.6 V. The command to 

use is VOUT_COMMAND. The data that goes with that command would be determined as follows: 

 

 

Remembering that in the SMBus protocols the low bytes are transmitted first, the Main would send 0xCD 

as the first data byte and 0x4C as the second data byte.  

 

Example: 2: Trimming the output voltage 

Suppose now that the output voltage of an intermediate bus converter is be reduced by 150 mV using 

the VOUT_TRIM command. The data bytes would be determined as follows: 

 

 

 

Again, as the low bytes are sent first, the Main would send 0xCD as the first data byte and 0xFE as the 

second data byte. 

Command name Command description Range and resolution 

VOUT_COMMAND F5.11 (Unsigned, 5 bits to the left of the binary 
point, 11 bits to the right of the binary point) 

 

Resolution (1 LSB): 488 μV/bit (2-11 V/
bit) 

Maximum Value: 31.99951 V (0xFFFF) 

(= (216 – 1)·× 1 LSB = 32 V – 1 LSB) 

VOUT_TRIM Q4.11 (Two’s complement, 1 sign bit plus 4 bits 
to the left of the binary point, 11 bits to the right 
of the binary point) 

 

Resolution (1 LSB): 488 μV/bit (2-11 V/
bit) 

Maximum Positive Value: 15.99951 V 
(0x7FFF) 

(= (215 – 1)·× 1 LSB = 16 V – 1 LSB) 

Most Negative Value: -16.0 V 
(0x8000) 

(= -215 × 1 LSB)  

Table 3: Output voltage related commands and range & resolution  

https://flexpowermodules.com/resources/fpm-techspec-bmr453
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11 Bit linear format 

For settings and measurements that do not need 

the high resolution of the output voltage, such as 

measuring the input voltage, the PMBus 

specification provides for an 11 bit two’s 

complement fixed point data format. 

This data format is the same for the digital 

regulators and the digital intermediate bus 

converters. 

When using this format, there are sixteen data bits. 

The five high order bits are a two’s complement 

number that sets the location of the binary point. 

Another way to think of these five bits is that they 

set the scale factor. 

The eleven low order bits are a two’s complement 

that contains the basic number information. Figure 

10 shows how the two data bytes are structured. 

 

Example 1: 11 bit linear data to be written to a 

PMBus device  

Suppose the output overcurrent threshold is to be 

set to 10 A using the IOUT_OC_FAULT_LIMIT 

command. There are many possible values of the 

two data bytes depending on where the binary 

point (scaling factor) is set. To use the smallest 

possible resolution, start by calculating the scaling 

factor  

 

 

Table 4 shows the possible ranges of values and 

resolutions that can be expressed with the 11 Bit 

Linear format.  

 

Note that for any given 5 bit binary point locater 

value, the smallest resolution is about 0.1% (1 part 

in 1024). 

Note that when calculating N, we need a function 

that takes the integer portion (truncates). If the 

result were rounded up, then the size of the least 

significant bit (LSB) would be so small that later, 

when the 11 bit data value is calculated, it would 

exceed the maximum values of +1023 or -1024. 

Now use the scaling factor to calculate the 

resolution of the overcurrent threshold:  

 

Parameter Value Calculation 

Maximum Positive Value 33,521,664 (0x7FFF) 2+15  x (210 – 1) = 2+15  x 1023  

Minimum Positive Resolution (LSB) 15.26 × 10-6 (0x8001) 2-16 x 1 

Minimum Negative Value Resolution -15.26 × 10-6 (0x87FF) 2-16 x -1 

Maximum Negative Value -33,554,432 (0x7C00) 2+15  x  -210 = 2+15  x (-1024)  

Table 4: 11 Bit linear format data ranges and resolutions 

Figure 10: 11 bit linear format data byte structure 
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Calculate the number of LSBs:  

Put the scaling factor and data bits together to 

form the two data bytes:  

Remembering that the low order byte is 

transmitted first, the Main would send the 

value 0x80 followed by 0xD2.  

Note that this value is not unique. Other 

scaling factors could be used, resulting in a 

different binary representation of the same 

decimal value.  

 

Example 2: 11 decoding 11 bit linear data 

received from a PMBUS device  

Suppose that a digital intermediate bus 

converter returns the data bytes 0x85 followed 

by 0xE0 in response to the READ_IOUT 

command. The question is what output 

current is the device reporting? Assembling 

the two data bytes into the correct order 

gives the hexadecimal value 0xE085. If we 

separate this into the five most significant and 

11 least significant bits:  

 

 

The scale factor is 0b11100 which is -4 

(decimal). The data bits are 0b000 1000 0101 

which is 133 (decimal). The value of the 

output current is calculated as: 

 

Non-numeric data  

Many PMBus commands, such as those that 

read the status of the PMBus device or 

configure the fault response, have a non-

numeric format. The details of these formats 

are given in Part II of the PMBus specification.  

Figure 11: Data bytes for 11 bit linear format example 1 

Figure 12: Data bytes for 11 bit linear format example 2 
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PMBus 
commands on the 
bus  
When PMBus commands are sent over the bus, the 

general structure of the transaction is:  

• 7 bit address followed by a zero to indicate 

that the next data byte is being written to the 

Secondary device  

• A one byte command code that instructs the 

receiving device to take some action   

• And for most PMBus commands, data is 

either written to the device (such as the data 

setting the output voltage) or read from the 

device (such as a reading of the current 

output voltage)  

Example PMBus transaction 1: A command 

with one byte of data written to a PMBus 

device  

Figure 13 illustrates a bus transaction for a PMBus 

command that writes one byte of data to the 

PMBus device.  

 

 

 

This transaction proceeds as follows:  

• The Main device puts a START condition on 

the bus to notify the Secondary devices that 

a transaction is beginning.  

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 0 (to indicate that this 

will be a transaction in which the Main writes 

data to the PMBus device).  

• The PMBus device acknowledges its address 

and that it is ready to receive data (ACK).  

• The Main bus device sends the one byte 

command code.  

• The PMBus device ACKs the received 

command code.  

• The Main device puts a REPEATED START 

condition on the bus to notify the Secondary 

devices that a transaction is beginning.  

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 1 (to indicate that this 

will be a transaction in which the Main reads 

data from the PMBus device).  

• The PMBus device acknowledges its address 

and that it is ready to send data (ACK).  

• The PMBus device sends the first data byte 

for the received command code. 

The Main device ACKs the received data 

byte.  

• The PMBus device sends the second data 

byte for the received command code.  

• The Main device does not acknowledge 

(NACKs) the received data byte.  

• The Main device puts a STOP condition on 

the bus to notify the Secondary devices that 

the transaction is complete. 

Please consult the microcontroller’s 

documentation for information on how to 

implement the REPEATED START and read of data 

from a PMBus device.  

Figure 13: Example PMBus transaction protocol with one byte 

written to the PMBus device 
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Example PMBus transaction 3: A command 

that reads a block of data from a PMBus 

device  

The transaction proceeds as follows:  

• The Main device puts a START condition on 

the bus to notify the Secondary devices that 

a transaction is beginning.  

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 0 (to indicate that this 

will be a transaction in which the Main writes 

data to the Secondary device).  

• The PMBus device acknowledges its address 

and that it is ready to receive data (ACK).  

The Main bus device sends the one byte 

command code.  

The PMBus device ACKs the received command 

code.  

• The Main device puts a REPEATED START 

condition on the bus to notify the Secondary 

devices that a transaction is beginning.  

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 1 (to indicate that this 

will be a transaction in which the Main reads 

data from the PMBus device).  

• The PMBus device acknowledges its address 

and that it is ready to send data (ACK).  

• The PMBus device sends the number of bytes 

of data to follow (byte count). The byte 

count does not include the byte including 

the byte count information.  

• The Main device ACKs the received data 

byte with the byte count.  

• The PMBus device sends the first data byte 

for the received command code.  

• The Main device ACKs the received data 

byte.  

• The PMBus device sends the second data 

byte for the received command code.  

• The Main device ACKs the received data 

byte.  

• The sending of data bytes and 

acknowledgment by the Main continues until 

the PMBus device sends the Nth data byte.  

• The Main device does not acknowledge 

(NACKs) the reception of the Nth data byte.  

• The Main device puts a STOP condition on 

the bus to notify the Secondary devices that 

the transaction is complete.  

 

 
Responding to a NACK from a 
PMBus device  

If a PMBus device does not acknowledge a 

command or data byte, the current transaction 

should be ended by putting a STOP condition on 

the bus. Any further data transfer cannot be 

considered reliable. There is no immediate way to 

know why the PMBus device did not acknowledge 

the command or data byte. The Main bus device 

must interrogate the PMBus device using status 

commands to determine the cause of the NACK.   

Figure 14: PMBus command that reads a block of data from a 

PMBus  device 
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Packet error 
checking  

SMBus packet error checking  

The SMBus specification provides for an optional 

basic means to detect (but not correct) errors in 

the packet – packet error checking (PEC). In the 

SMBus packet error checking a one byte cyclic 

redundancy check (CRC) sum is added at the end 

of each transaction. Each device can compare 

the received checksum, calculated by the sender, 

with the checksum it computes from the received 

data. If the checksums match there is good 

assurance that the data was received 

uncorrupted. The digital regulators and digital 

intermediate bus converters support SMBus packet 

error checking.  

Calculating the checksum  

The checksum is calculated using all data bytes 

plus the byte containing the address and READ/

WRITE# bit. The formula for calculating the 

checksum is:  

C(x) = x8 + x2 + x +1  

There are several ways of calculating the 

checksum. Some use a pure arithmetic 

computation, which uses less memory but takes 

more time. Other algorithms use a lookup table 

which is less computation time but takes more 

memory.  

Appendix 1 gives an example in C language of a 

way to calculate the PEC checksum in a direct 

way (no tables). There is no best algorithm for all 

applications and the choice of algorithm is left to 

the PMBus Main device firmware engineer.  

Checking PEC support in a 
Secondary device  

Before using packet error checking with a PMBus 

device, the Main should determine if the device 

supports packet error checking. This is done with 

the PMBus QUERY command.  

If bit [7] of the data byte returned in response to a 

QUERY command is set (=1), the device supports 

packet error checking. If bit [7] is cleared (= 0) then 

the device does not support packet error 

checking.  

Writing data with a PEC byte  

Figure 16 illustrates a PMBus WRITE WORD 

transaction using packet error checking.  

The transaction proceeds as follows:  

• The Main device puts a START condition on 

the bus to notify the Secondary devices that 

a transaction is beginning.  

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 0 (to indicate that this 

will be a transaction in which the Main writes 

data to the PMBus device).  

• The PMBus device acknowledges its address 

and that it is ready to receive data (ACK).  

• The Main bus device sends the one byte 

command code. 

Figure 15: PMBus WRITE WORD command with packet error 

checking byte  
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• The PMBus device ACKs the received 

command code.  

• The Main bus sends the low data byte.  

• The PMBus device ACKs the received data 

byte.  

• The Main bus sends the high data byte.  

• The PMBus device ACKs the received data 

byte.  

• The Main bus sends the packet error 

checking data byte.  

• The PMBus device ACKs the received data 

byte.  

• The Main device puts a STOP condition on 

the bus to notify the Secondary devices that 

the transaction is complete.  

 

Reading data with a PEC byte  

Figure 16 illustrates a PMBus READ WORD 

transaction using packet error checking.  

 

The transaction proceeds as follows:  

• The Main device puts a START condition on 

the bus to notify the Secondary devices that 

a transaction is beginning.  

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 0 (to indicate that this 

will be a transaction in which the Main writes 

data to the Secondary device). . 

• The PMBus device acknowledges its address 

and that it is ready to receive data (ACK).  

• The Main bus device sends the one byte 

command code.  

• The PMBus device ACKs the received 

command code.  

• The Main device puts a REPEATED START 

condition on the bus to notify the Secondary 

devices that a transaction is beginning.  

• The Main sends the 7 bit address of the 

device to receive the data followed by the 

READ/WRITE# bit set to 1 (to indicate that this 

will be a transaction in which the Main reads 

data from the PMBus device).  

• The PMBus device acknowledges its address 

and that it is ready to send data (ACK).  

• The PMBus device sends the first data byte 

for the received command code.  

• The Main device ACKs the received data 

byte.  

• The PMBus device sends the second data 

byte for the received command code.  

• The Main device ACKs the received data 

byte. This notifies the PMBus device that the 

Main is expecting another data byte.  

• The PMBus device sends the packet error 

checking data byte.  

• The Main device does not acknowledge 

(NACKs) the packet error checking data 

byte.  

• The Main device puts a STOP condition on 

the bus to notify the Secondary devices that 

the transaction is complete. 

Please consult the microcontroller’s docu-

mentation how to implement the REPEATED 

STARTand read of data from a PMBus device. 

Figure 16: PMBus WRITE WORD command with packet error 

checking byte  
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No PEC support  

If you are using PEC with a PMBus Device that does 

not support packet error checking then the Main 

sends a packet error checking data byte to a 

PMBus device that does not support packet error 

checking, it will treat this as a communications fault 

(too many data bytes for the command).  

If a Main device attempts to read a packet error 

checking byte from a device that does not support 

packet error checking, the device will:  

• Send a 0xFF value (by not driving the data 

line while the Main is requesting the data bits) 

and  

• Declare a communications fault because 

the Main asked for more data bytes than are 

specified for the command.  

 

Handling a failed checksum 
comparison  

The SMBus packet error checking only provides a 

means to detect errors. There is no ability to correct 

corrupted data. If a PMBus Main device receives 

data for which the checksums do not match the 

only recourse is to read the data again.  

 

SALERT 
(SMBALERT#) 
protocol  
The SMBALERT# protocol is an important element of 

the SMBus and PMBus protocols. Suppose a PMBus 

has a change condition, an overtemperature 

condition for example, the Main bus device should 

be notified. One way to do that would be for the 

PMBus device to become a Main bus and send a 

message. However, multi-Main bus systems are not 

favored due to issues with congestion and conflict. 

The notification method that is preferred, and 

implemented in our digital products, is for the 

PMBus device to use a separate, dedicated signal 

line to notify the Main bus of a change of 

condition. That signal in our digital products is the 

SALERT.  

One possible implementation is for each digital 

product to have its SALERT signal connected to a 

dedicated input on the Main bus device. With this 

implementation the Main bus knows instantly and 

unambiguously which digital product needs 

attention.  

The disadvantage to this approach is the number 

of signal lines on the system board and the number 

of I/O pins needed on the Main bus 

microcontroller.  

Another possible implementation is to have one 

SALERT line that is common to all of the digital 

products and that terminate on one I/O pin of the 

microcontroller. With this approach, the Main bus 

must use the SMBALERT# protocol to determine 

which digital product or products need attention. 

An important aspect of the alert protocol is that 

the SALERT outputs on the digital products are all 

open drain. It is possible that more than one digital 

product or other PMBus device is simultaneously 

asserting the SALERT signal by pulling the signal low. 

With that in mind, here is how the alert protocol 

works.  

First, one or more digital products or other PMBus 

devices assert the SALERT signal by pulling it low.  

The SALERT input to the microcontroller can either 

be a polled I/O pin or a pin with interrupt-on-

change functionality. Once the microcontroller 

detects the SALERT has been asserted, it reads the 

SMBALERT Response Address (SRA).  

The seven bit SMBALERT Response Address, 0001 

100, is a special and reserved SMBus address.  
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When a PMBus device detects the SRA with the 

READ/ WRITE# bit set for read, and it is asserting the 

SALERT signal, it responds with its address. If more 

than one device responds, the open-drain wired-

AND connection of the SALERT signal assures that 

the PMBus device with the lowest address will have 

a valid response. A PMBus device that attempts to 

send a 1 as part of its address will see that the 

value on the bus is a 0. That indicates to the PMBus 

device that it has lost the bit-wise arbitration. It 

stops trying to send its address and leaves the 

SALERT signal asserted. The bitwise arbitration is 

illustrated in Figure 17.  

Note that is the only time a Main bus device 

addresses a PMBus device with the READ/WRITE# 

bit set for a read.  

The Main bus device now has the address of the 

PMBus device that was asserting the SALERT signal. 

The Main bus should then check the state of the 

SALERT signal.  

If another PMBus device is asserting SALERT, the 

SALERT signal reMains low. The Main bus device 

should then send another read to the SMBALERT# 

Response Address. The Main bus will then get the 

address of another PMBus device that was 

asserting SALERT.  

Again, the Main bus should check SALERT. If SALERT 

is high, then no more PMBus devices are asserting 

SALERT. If SALERT is still low, the Main bus device 

should keep reading the SRA until SALERT is no 

longer asserted.  

At that point, the Main bus can follow its 

programmed response to an alert condition. For 

example, the next step might be to send a 

STATUS_BYTE or STATUS_WORD command to each 

device that was asserting SALERT to get the first 

level of diagnostic information. With this status 

information, the Main can decide to take action 

on the information it has to make inquiries to the 

Secondary about its status. What action to take in 

case of a fault or abnormal condition is the 

decision of the system engineer and is not part of 

the PMBus specification.  

 

Figure 17:  Alert response bitwise arbitration  
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Other PMBus 
signals  
The PMBus specification provides for two 

dedicated signals in addition to the standard 

SMBus signals (data, clock and SMBALERT#). 

CTRL (PMBus CONTROL)  

The PMBus CONTROL signal (labeled as CTRL on the 

product datasheets) can be used to turn the 

regulator output on and off.  

How the CTRL signal works is configured with the 

PMBus ON_OFF_CONFIG command. For example, 

the CTRL signal can be configured as active high 

or active low. Please see AN302, PMBus Command 

Set, and the PMBus specifications for the details.  

The CTRL signal can be driven with a general 

purpose I/O signal that operates from either 3.3 V 

or 5.0 V power supply.  

WP (Write Protect)  

The PMBus specification also provides for a Write 

Protect (WP) command that can be used to 

prevent unwanted or unauthorized changes to the 

PMBus device configuration. Our digital products 

do not provide a Write Protect pin and this 

functionality is not supported. 

 

PMBus variations 
from SMBus 
specification  

Signals  

The PMBus specification adds two signals, CTRL 

(CONTROL) and WRITE PROTECT (WP) that are not 

in the SMBus specification. These are described 

below.  

Speed  

The maximum bus speed described in the SMBus 

specification (v3.2) is 1 MHz. The PMBus 

specification (v1.4) also allows bus speeds up to 1 

MHz.  

All of our digital devices can operate at 100 kHz. 

Our latest digital intermediate bus converters and 

POL regulators can also support bus speeds of 400 

kHz and 1 MHz, but please check individual 

datasheets for full compatability information. 

It is possible to have both devices on the same bus 

and communicate with them at different data 

rates (bus speeds). However, this requires care on 

the part of the programming of the Main device. If 

possible, operating the bus only at the lowest 

maximum speed supported by any device on the 

bus is the recommended practice.  

If the bus is operated at 400 kHz or 1 MHz, it is up to 

the system engineer to assure that all timing 

parameters are met under all conditions.  

GROUP protocol  

With the standard SMBus transaction protocols and 

the PMBus requirement that a PMBus device start 

processing the received command when the STOP 

condition is detected, only one device can be 

given a command at a time. It is not possible to 

send commands to multiple PMBus devices and 

have them respond simultaneously.  

To eliminate this restriction, the PMBus specification 

added the GROUP protocol. This protocol uses 

REPEATED START conditions to essentially send 

commands to many PMBus devices in one bus 

transaction. At the end of the transaction, when 

the STOP condition is detected, the multiple PMBus 

devices start processing the received commands 

(which do not have to be the same command for 

each device) simultaneously.  

This would be useful, for example, during margin 

testing. All of the PMBus devices on the bus could 

be commanded to change their margin states 

simultaneously.  

https://flexpowermodules.com/resources/fpm-appnote302-pmbus-command-set
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When using a general purpose microcontroller to 

manage multiple PMBus devices there can be a 

problem with the GROUP protocol. Most general 

purpose microcontrollers with hardware I²C 

interfaces do not support the multiple REPEATED 

START conditions in one transaction. Consult the 

microcontroller manufacturer’s documentation to 

determine whether or not the GROUP protocol can 

be used in your system. 

Summary  
This application note has shown how to use a 

general purpose microcontroller to interface with 

Flex Power Modules digital products using the 

PMBus protocol. Firmware engineers writing code 

for this purpose are strongly encouraged to read 

the SMBus and PMBus specifications for more 

detailed information.  

The first key concept is the structure of the PMBus 

transactions over the SMBus.  

First, it is important to understand the difference in 

packet construction when writing data to a PMBus 

device and when reading from a PMBus device.  

Next, the various data formats must also be 

understood and applied properly. Examples were 

given to show how data is converted to and from 

real world values and the PMBus data formats.  

The use of the SMBus packet error checking 

protocol was then explained. While the 8 bit CRC 

checksum is not perfect and does not provide a 

means to correct errors, a match of the checksums 

provides high confidence that the data was 

received correctly.  

Finally, the use of the SALERT signal and the SMBus 

SMBAlert protocol was explained. The SALERT signal 

provides the PMBus devices a way to quickly signal 

the Main that a device has a warning, fault, or 

other condition that needs attention. This 

eliminates the need for the Main to constantly and 

continuously poll the PMBus devices for their status, 

reducing the load on the Main device as well as 

minimizing traffic on the bus  
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Appendix 1: Example PEC checksum 
calculation code  
The code below is provided as an example of one way to calculate the SMBus PEC checksum using the 

direct method.  
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