
APPLICATION NOTE 304

Microcontroller
programming for digital
products

14/28710-FGB 100 378 Rev A 2024-03-28 2

Contents
Introduction ... 3

Forum websites ... 4

PMBus - power system management bus protocol 4

SMBus - system management bus document 4

SMBus basics.. 5

PMBus data format .. 12

PMBus commands on the bus ... 14

Packet error checking (PEC) ... 18

SALERT protocol .. 21

Other PMBus signals ... 23

PMBus variations from SMBus specification 23

Summary .. 24

Appendix 1: Example PEC checksum calculation code 25

Abstract
Our digital products can be

configured, controlled and

monitored through a digital serial

interface using the PMBus™ power

management protocol. This

application note provides an

introduction to the serial bus

interface of the our digital products

and accessing the products using a

general purpose microcontroller. This

application note is not a detailed

tutorial on the PMBus power

management protocol. It is

recommended that you study the

SMBus and PMBus specification

documents before attempting to

access our digital product via the

serial bus interface. While it is

possible to write firmware for the

microcontroller that creates a serial

bus by “bit banging” general

purpose I/O pins, this is not

recommended. It is highly

recommended that the user choose

a microcontroller that includes a

hardware implementation of an I²C

or SMBus interface. For such an

interface, the programmer is

generally only concerned with

transferring data to and from

transmit and receive buffers and

monitoring flags for the status of the

data transmission. The details of

working with a microcontroller’s I²C

or SMBus interface are dependent

on the microcontroller being used

and are not discussed in this

application note. This application

note will assume that a

microcontroller with a hardware I²C

or SMBus port is being used.

14/28710-FGB 100 378 Rev A 2024-03-28 3

Introduction
Flex Power Modules digital products are designed

with state-of-the-art digital controllers. This provides

the user with superior electrical performance and a

broad capability to configure, control and monitor

the products in the engineering lab, in the factory,

and in the field.

This capability is provided by the use of the open-

standard PMBus™ digital power management

protocol. The PMBus protocol was created by the

System Management Interface Forum (SMIF) and

Power Management Bus (PMBus) Implementers

Forum to standardize communication with a wide

range of power conversion devices. The resulting

PMBus standard is written in two parts.

The first, “Specification Part I – General

Requirements Transport and Electrical Interface”,

specifies the transport including the physical layer,

addressing, and packet structure.

The second, “Specification Part II – Command

Language”, specifies the command language to

be used when communicating with PMBus

compliant devices.

The PMBus specifications are freely available at the

PMBus website

In addition to the capabilities provided by the

PMBus, some of Flex Power Modules’ digital PoL

regulators feature the Group Command Bus (GCB).

The GCB is an inter-device communication bus

that provides additional capabilities like digital

current sharing and fault propagation

management.

This document, to be used in conjunction with the

PMBus specifications and the Datasheets for each

product, describes how to interface a

microcontroller based system controller to the Flex

Power Modules digital bus converters and

regulators. The focus of this document is more on

the issues involved in programming the

microcontroller than in the details of the physical

layer and bit-by-bit operation of the bus.

This application note is applicable for all of our

digital products.

Figure 1b: digital IBC - BMR351

Figure 1a: digital PoL - BMR473

Figure 1c: digital PoL - BMR469

http://www.pmbus.org

14/28710-FGB 100 378 Rev A 2024-03-28 4

Forum websites

The System Management Interface
Forum (SMIF)

The System Management Interface Forum (SMIF)

supports the rapid advancement of an efficient

and compatible technology base that promotes

power management and systems technology

implementations. The SMIF provides a membership

path for any company or individual to be active

participants in any or all of the various working

groups established by the implementer forums.

Power Management Bus
Implementers Forum (PMBUS-IF)

The PMBus-IF supports the advancement and early

adoption of the PMBus protocol for power

management. This website offers recent PMBus

specification documents, PMBus articles, as well as

upcoming PMBus presentations and seminars,

PMBus Document Review Board (DRB) meeting

notes, and other PMBus related news.

PMBus – power
system manage-
ment bus protocol
documents
These specification documents may be obtained

from the PMBus-IF website described above. These

are required reading for complete understanding

of the PMBus implementation. This application note

will not re-address all of the details contained

within the two PMBus Specification documents.

Specification Part I – General Requirements

Transport And Electrical Interface

Includes the general requirements, defines the

transport and electrical interface and timing

requirements of hardwired signals.

Specification Part II – Command Language

Describes the operation of commands, data

formats, fault management and defines the

command language used with the PMBus.

SMBus – system
management bus
documents

System Management Bus
Specification, version 3.2, Jan 2022

This specification specifies the version of the SMBus

on which Revision 1.4 of the PMBus Specification is

based. This specification is freely available from the

System Management Interface Forum Web site.

http://www.powersig.org/
https://pmbus.org/
http://www.smbus.org/specs/

14/28710-FGB 100 378 Rev A 2024-03-28 5

SMBus basics

Introduction

We start with an introduction to the SMBus because

the PMBus protocol is based on SMBus Version 3.2.

The PMBus protocol does have some unique

extensions to the SMBus interface that will be

discussed later.

The SMBus is a two wire serial bus with electrical

characteristics very similar to the I²C bus invented

by Philips. If you are familiar with using a

microcontroller to manage I²C devices then you

will have little difficulty accessing our digital

products via the serial bus interface.

SMBus signals

The SMBus has two required signal wires. SMBCLK is

the clock signal that is generated only by the Main

(Master) bus device. SMBDATA is a bi-directional

signal that is used to transfer data between the

Main and the Secondary (Slave) devices. For our

digital products, these signals are identified as SCL

and SDA, respectively.

The SMBus specification also includes an interrupt

signal, SMBALERT#, that a Secondary device can

use to notify the Main bus device that it has

information for the Main bus unit. This is used by the

digital products and is identified on the product

technical specifications as SALERT. A description of

the operation of the alert signal is given below.

PHY layer and electrical interface

The SMBus physical layer is very similar to, but not

identical to, the physical layer of the I²C bus. For

most purposes, SMBus and I²C devices are

interoperable on the same bus. For the details of

the electrical levels and signal timing, please refer

to the SMBus specification, .System Management

Bus Specification, Version 3.2, Jan, 2022.

The SMBus, like the I²C bus, uses open drain devices

to drive the signal lines. One pull-up resistor is

needed for each signal line. It is recommended

that the pull-up resistor be placed at the Main bus

device. The value of the pull-up resistor depends

on supply voltage and the number of devices on

the bus. See the SMBus specification for information

on choosing the proper value of the pull-up resistor.

Make sure that the rise and fall times of the bus

signals are compliant with the SMBus specification.

Improper rise and fall times are one of the most

common causes of unreliable bus operation.

Some microcontrollers offer the option of

configuring the serial bus port for I²C or SMBus

signal levels. If the microcontroller being used offers

this option, configure the serial bus pins for the

SMBus signal levels.

Addressing

The SMBus specification, like the I²C specification,

provides for each device to have a seven bit

physical address. Each device on the bus must

have a unique address. It is left to the system

engineer to assure that there are no address

conflicts.

Our DC/DC products use resistors to program the

bus address of each device. The device address is

not configurable through the serial bus interface.

Consult the datasheet for the digital product being

used for the details on setting the device’s bus

address.

Transaction basics

In most microcontrollers with I²C and SMBus

interfaces, the details of the transaction are

invisible to the programmer. The programmer

simply reads and writes data from buffers and

monitors flags for data transmission status.

However, we will provide here a short discussion of

the how data is sent and received over the bus.

This understanding will be helpful when working

with more complex commands and data.

http://www.smbus.org/specs/index.html
http://www.smbus.org/specs/index.html

14/28710-FGB 100 378 Rev A 2024-03-28 6

The Main bus initiates a transaction by placing a

START condition on the bus. This alerts all of the

Secondary devices to start listening.

After the START condition the Main transmits a

seven bit address followed by an eighth bit that

indicates whether the Main will be writing or

reading data from the Secondary device.

Each Secondary device compares its address to

the address just received. If there is a match, the

device acknowledges its address with an ACK

condition on the bus. When the Main device

detects the ACK it proceeds with the rest of the

data transaction.

During the transmission of data the receiving

device must either acknowledge the byte with an

ACK or tell the sender that there was a problem by

not acknowledging (NACK) the byte.

The exception is the case where data is being

transferred to the Main bus device. Upon receiving

the last data byte, the Main bus does not

acknowledge (‘NACKs’) the byte.

The transaction is completed when the Main bus

puts a STOP condition on the bus. The bus is then

considered free (not busy) after a specified

minimum delay time after the STOP condition.

Bit and bytes – the data link layer

Bits and data validity

Figure 1 below shows how bits are transmitted on

the SMBus.

The Main bus device always drives the clock (SCL)

line. When the Main pulls the clock line low, it is

notifying the sending device that the next bit is to

be placed on the data line.

Note that the sending device may be a Secondary

device transferring data to the Main bus or it may

be the Main bus writing data to a Secondary

device. The data line is allowed to change state

only during the time that the clock is low.

The Main bus then allows the clock line to go high.

This signals the receiving device that the next bit is

ready to be read from the data line. During the

time that the clock is high, the data line must not

change state.

START, ACK, NACK and STOP conditions.

Transactions on the SMBus are initiated when the

Main bus puts a START condition on the bus and

are ended when the Main bus puts a STOP

condition on the bus.

Figure 2 shows a SMBus start condition. Initially, the

bus is idle with both the clock and data lines high

for minimum specified amount of time (see the

SMBus specification for the details). The Main then

pulls the data line low while the clock is high. This

signals all devices on the bus that a transaction is

about to start.

Once the START condition has been placed on the

bus, the Main continues to toggle the clock line to

control the transfer of bits. Figure 3 shows the

transfer of the first data byte. The Main device

keeps toggling the clock to cause the transfer of

the eight bits in the byte.

Figure 2: SMBus bit transfer

Figure 3: SMBus START condition

14/28710-FGB 100 378 Rev A 2024-03-28 7

Then the Main lowers the clock for a ninth bit. If the

receiving device has received the byte it pulls the

data line low during the ninth clock period. This

acknowledges (ACKs) to the sending device that

the byte was received and that the transaction

can continue.

NACK (Not Acknowledge)

If the receiving device did not successful receive

the byte, it does not pull the data line low during

the ninth bit. This lack of acknowledgement

(NACK) notifies the sending device that the byte

was not successfully received. In this case, the

sending device typically ends the transaction and

initiates its programmed error response and

recovery function. Figure 4 shows a data byte that

ends with a NACK.

Other than a Main device not acknowledging the

last data byte of a read from a Secondary device

as described below, each byte should be

acknowledged. A device may not acknowledge a

byte for one of several different reasons.

Possible reasons include the device being too busy

to respond or the device considers the data to be

invalid.

There is no direct way to know why a device

NACK’ed a data byte. The digital regulators and

bus converters, through the comprehensive status

and fault reporting in the PMBus protocol

specification, can provide the Main bus

information that will generally let the Main know

why a data byte was NACK’ed.

Figure 4: SMBus byte transfer with acknowledge

Figure 5: SMBus data byte without acknowledge

14/28710-FGB 100 378 Rev A 2024-03-28 8

STOP condition

A Main device notifies all devices on the bus that

the current transaction is complete by placing a

STOP condition on the bus. Figure 5 shows STOP

condition after an ACK of the last data byte of the

transaction. After the ACK, when the data line is

low, the Main continues to hold both the data and

clock lines low. It then releases the clock line and

allows it to go high. After a time interval specified in

the SMBus specification, the Main allows the data

line to go high. Again, the transition of the data line

while the clock is high, which is not allowed during

the normal transmission of the data bits, signals to

all devices on the bus that the transaction is

complete. At this point the bus is again idle with

both the clock and data lines high.

In some cases the STOP condition will be issued

after the last data byte is not acknowledged

(NACK’ed). In this case the data line is high during

the ninth clock period. After the ninth clock period

is complete, the Main pulls the clock line and the

data line low. The Main then releases the clock line

and allows it to go high. After the specified delay

time, the Main releases the data line and allows it

to go high. This STOP condition signals to all of the

devices on the bus that the current transaction is

complete. Figure 6 shows the clock and data

signals when a STOP condition is put on the bus

after a NACK.

Is should be noted that a Main may put a STOP

condition on the bus at any time, not just at the

end of a data byte. While this is an abnormal

condition, it is permitted by the SMBus

specification.

Clock stretching

There may be occasions when a device involved in

a SMBus transaction may want to pause the

transaction. For example, a device that just

received a data byte may want to check that

received data byte is valid. A Secondary device

being asked to supply data may need extra time

to retrieve that data from a relatively slow EEPROM

memory.

The SMBus specification allows for a device to

pause a transaction by holding the clock line low.

This stops the bus until the clock line is allowed to

go high. This is called “clock stretching”. This

practice is discouraged as a matter of good

system practice but may be unavoidable. Any

device acting as a Main bus must be prepared to

accept clock stretching by a Secondary device.

Figure 7 illustrates how clock stretching by a

Secondary device works and how it can cause

problem for a Main bus that is not SMBus

compliant. In this case the Main bus is sending

data to the Secondary device. After the eighth bit,

the Secondary device needs time to validate the

data in the byte and decide whether to ACK or

NACK. After the Main lowers the clock to end the

eighth bit, the Secondary device turns on its clock

output to hold the clock line low and to pause the

bus. Since the clock and data outputs on SMBus

devices are open-drain, any device that turns on

its clock or data output will hold that signal line low.

Figure 6: STOP condition after ACK

Figure 7: STOP condition after a NACK

14/28710-FGB 100 378 Rev A 2024-03-28 9

The Main bus, in its normal timing cycle, turns off its

clock output for the ninth (acknowledge) bit.

However, because the Secondary device is

holding the clock line low, the clock line does not

go high. For a Main device that cannot handle

clock stretching by a Secondary device, this would

be an error condition. That Main would typically

terminate the transaction and set an error flag.

For a Main bus device that is compatible with

clock stretching by a Secondary device, it will

leave its clock output off and wait. One the

Secondary device releases the clock line and the

clock goes high, the Main bus reads the data line

to determine if the Secondary device has ACK’ed

or NACK’ed the data byte. In Figure 7 the

Secondary device has ACK’ed the data byte and

the Main bus continues with sending the next byte

of data.

The best way to avoid problems with clock

stretching by Secondary devices is to make sure

that the Main bus device is fully compliant to the

SMBus specification. It is up to the system engineer

for the system to assure that any microcontroller

used as a Main bus is SMBus compliant and will

accept clock stretching by a Secondary device.

The alternative, which is not recommended, is to

use bit banged general purpose I/O pins for the

SMBus interface.

Bus timeout limits

While the SMBus specification allows for clock

stretching, it does not allow for an unlimited

pausing of the bus. The details are important so it is

recommended that you carefully study the SMBus

specification.

In general, during one bus transaction, a

Secondary device may not extend the clock by

total cumulative time of more than 25 ms

(TLOW:SEXT).

Main bus devices are not permitted to extend the

clock low by more than 10 ms in any one byte

(TLOW:MEXT).

The SMBus specification also requires that a Main

bus device that detects that the clock has been

held low for more than 25 ms (TTIMEOUT,MIN) must

put a STOP condition on the bus during or just after

the current data byte. Any device that has

detected an excessive clock low time are required

to reset their communications controller and be

ready to receive a new START condition within 35

ms (TTIMEOUT,MAX).

This is an important feature of the SMBus. While it

cannot recover from all faults, such as a clock line

with an electrical short to ground, it can help

recover a bus that has become stuck due to

software, logic, or even some noise errors.

This is in contrast to the I²C bus which a clock line

held low indefinitely is a valid condition (minimum

clock speed is 0 Hz).

And again, it is best that these timing details are

handled in the hardware of an I/O port that is fully

compliant with the SMBus specification.

SMBus data transfer protocols

Information is transmitted in atomic transactions.

SMBus transactions are completed only through

one of several formats defined in the SMBus

specification. This is different from the I²C

specification which does not address how data is

to be transferred between devices on the bus. For

a complete list of the permitted transactions see

the SMBus Specification (Version 3.2).

Only the Main bus may initiate a transaction and

all commands and data are transferred in a

continuous transaction. The bus remains busy until

the transaction is complete.

Figure 8: Clock stretching by a SMBus Secondary device

14/28710-FGB 100 378 Rev A 2024-03-28 10

Bit and byte order

In a SMBus transaction, the bytes are transmitted

starting with the lowest order byte and ending

within the highest order byte.

For example, suppose the data to be transmitted

was decimal value 31899 which can be

represented by the two byte hexadecimal value

0x7C9B. When the device sending the data

queues the bytes for transmission the byte 0x9B

would be sent first, followed by the byte 0x7C.

Note that within the data byte, the data is written

with the most significant bit first.

WRITE BYTE protocol example

To illustrate how SMBus transactions work, consider

Figure 8 which illustrates the SMBus WRITE BYTE

protocol. This protocol is used by the Main bus

device to write a single byte of data to a

Secondary device.

The transaction proceeds as follows:

• The Main device puts a START condition on

the bus to notify the Secondary devices that

a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 0 (to indicate that this

will be a transaction in which the Main writes

data to the Secondary device).

• The receiving device acknowledges its

address and that it is ready to receive data

(ACK).

• The Main device sends the data byte.

• The receiving device ACKs the received

data byte.

• The Main device puts a STOP condition on

the bus to notify the Secondary devices that

the transaction is complete.

From the programmer’s point of view, all that is

needed is to prepare the first byte with the address

and READ/WRITE# bit and the data byte. These are

passed to the hardware I²C or SMBus interface in

accordance with the microcontroller’s

specification.

READ WORD protocol example

Figure 9 illustrates the SMBus READ WORD protocol

that a Main device uses to read two bytes of data

from a Secondary device.

Figure 9: SMBus WRITE BYTE protocol

Figure 10: SMBus READ WORD protocol

14/28710-FGB 100 378 Rev A 2024-03-28 11

The READ WORD protocol transaction with packet

error checking proceeds as follows:

• The Main device puts a START condition on

the bus to notify the Secondary devices that

a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 1 (to indicate that this

will be a transaction in which the Main reads

data from the Secondary device).

• The receiving device acknowledges its

address and that it is ready to send data

(ACK).

• The Secondary device sends the first data

byte. Remember that if this is a 16 bit value,

this is the lower order byte.

• The Main bus ACKs the received data byte.

• The Secondary device sends the second

data byte. Remember that if this is a 16 bit

value, this is the higher order byte.

• The Main device does not acknowledge

(“NACKs”) the received packet error

checking data.

• The Main device puts a STOP condition on

the bus to notify the Secondary devices that

the transaction is complete.

14/28710-FGB 100 378 Rev A 2024-03-28 12

PMBus data
formats
Before discussing how commands are sent to a

digital product over the PMBus, it is important to

understand the formats of the data being written

to or read from a digital product.

The data for a PMBus command used with a digital

product may be one of three formats:

• 16 bit linear for output voltage related
commands

• 11 bit linear for other numerical values, and

• Custom formats for commands with non-
numerical data (such as commands that set
the response to a given type of fault).

16 bit linear for output voltage
related commands

The PMBus specification describes three different

possible formats for the data used in commands

that send or receive data related to setting or

adjusting the output voltage.

The VOUT_MODE command specifies the format in

use.

The 16 bit Linear Format is not used for commands

that set fault or warning thresholds related to the

output voltage. The 11 bit Linear Format (described

below) is used to set the fault and warning

threshold values.

The digital regulators and converters use the Linear

format, which is a 16 bit fixed point integer

representation. This 16 bit data provides for the

very fine resolution needed to set and adjust the

voltage on today’s high performance logic and

processors.

The commands that use this format and whether

the data is unsigned or two’s complement is listed

in Table 1.

In the PMBus specification all output voltages are

treated as positive and commands that directly set

the output voltage, such as VOUT_COMMAND, are

unsigned.

Commands that modify the output voltage, such

as VOUT_TRIM, are signed so that the voltage can

be increased or decreased.

Command name Command description Data format

VOUT_COMMAND Sets the nominal output voltage Unsigned

VOUT_TRIM Used to trim or adjust the output voltage Two’s complement

VOUT_CAL_OFFSET Used to calibrate the output voltage Two’s complement

VOUT_MAX Sets the maximum nominal voltage to which

the output can be programmed. This

command is typically used to prevent

unintentionally programming the voltage to a

level that could damage the load.

Unsigned

VOUT_MARGIN_HIGH Sets the output voltage when the regulator or

converter is commanded to margin the

output voltage to a greater than the nominal

value.

Unsigned

VOUT_MARGIN_LOW Sets the output voltage when the regulator or

converter is commanded to margin the

output voltage to a less than the nominal

value.

Unsigned

READ_VOUT Returns the actual, measured output voltage Unsigned

Table 1: Output voltage related commands and data formats

14/28710-FGB 100 378 Rev A 2024-03-28 13

Data format for digital PoL regulators

Data format

For the digital PoL regulators, the VOUT_MODE command is read only. This means that the fixed point

format (location of the binary point) is fixed and cannot be changed for the user.

For commands that directly set the output voltage, the data is a 16 bit unsigned value in the format

F3.13 (F means unsigned fixed point, there are three bits to the left of the binary point and 13 bits to the

right of the binary point).

For commands that modify the output voltage, the data is a 16 bit two’s complement value.

Example 1: Setting the output voltage

Suppose the output is to be set to 3.3 V. The command to use is VOUT_COMMAND. The data that goes

with that command would be determined as follows:

Remembering that in the SMBus protocols the low bytes are transmitted first, the Main would send 0x9A

as the first data byte and 0x69 as the second data byte.

Example: 2: Trimming the output voltage

Suppose now that the output voltage is be reduced by 50 mV using the VOUT_TRIM command. The

data bytes would be determined as follows:

Command name Command description Range and resolution

VOUT_COMMAND F3.13 (Unsigned, 3 bits to the left of the binary

point, 13 bits to the right of the binary point)

Resolution (1 LSB): 122.07 µV/bit

(2-13 V/bit)

Maximum Value: 7.99987793 V

(0xFFFF)

(= (216 – 1)·× 1 LSB = 8 V – 1 LSB)

VOUT_TRIM Q2.13 (Two’s complement, 1 sign bit plus 2 bits

to the left of the binary point, 13 bits to the

right of the binary point)

Resolution (1 LSB): 122.07 μV/bit (2-13

V/bit)

Maximum Positive Value:

3.99987793 V (0x7FFF)

(= (215 – 1)·× 1 LSB = 4 V – 1 LSB)

Most Negative Value: -4.0 V

(0x8000)

(= -215 × 1 LSB)

Table 2: Output voltage related commands and range & resolution

14/28710-FGB 100 378 Rev A 2024-03-28 14

Again, as the low bytes are sent first, the Main would send 0x66 as the first data byte and 0xFE as the

second data byte.

Data format for the digital Intermediate Bus Converters

Data Format

For the digital intermediate bus converters, the VOUT_MODE command is read only. This means that the

fixed point format (location of the binary point) is fixed and cannot be changed for the user. For

commands that directly set the output voltage, the data is a 16 bit unsigned value in the format F5.11 (F

means unsigned fixed point, there are five bits to the left of the binary point and 11 bits to the right of

the binary point).

For commands that modify the output voltage, the data is a 16 bit two’s complement value.

Example 1: Setting the output voltage

Suppose the output of a BMR4530000/002 (nominal 9 V output) is to be set to 9.6 V. The command to

use is VOUT_COMMAND. The data that goes with that command would be determined as follows:

Remembering that in the SMBus protocols the low bytes are transmitted first, the Main would send 0xCD

as the first data byte and 0x4C as the second data byte.

Example: 2: Trimming the output voltage

Suppose now that the output voltage of an intermediate bus converter is be reduced by 150 mV using

the VOUT_TRIM command. The data bytes would be determined as follows:

Again, as the low bytes are sent first, the Main would send 0xCD as the first data byte and 0xFE as the

second data byte.

Command name Command description Range and resolution

VOUT_COMMAND F5.11 (Unsigned, 5 bits to the left of the binary
point, 11 bits to the right of the binary point)

Resolution (1 LSB): 488 μV/bit (2-11 V/
bit)

Maximum Value: 31.99951 V (0xFFFF)

(= (216 – 1)·× 1 LSB = 32 V – 1 LSB)

VOUT_TRIM Q4.11 (Two’s complement, 1 sign bit plus 4 bits
to the left of the binary point, 11 bits to the right
of the binary point)

Resolution (1 LSB): 488 μV/bit (2-11 V/
bit)

Maximum Positive Value: 15.99951 V
(0x7FFF)

(= (215 – 1)·× 1 LSB = 16 V – 1 LSB)

Most Negative Value: -16.0 V
(0x8000)

(= -215 × 1 LSB)

Table 3: Output voltage related commands and range & resolution

https://flexpowermodules.com/resources/fpm-techspec-bmr453

14/28710-FGB 100 378 Rev A 2024-03-28 15

11 Bit linear format

For settings and measurements that do not need

the high resolution of the output voltage, such as

measuring the input voltage, the PMBus

specification provides for an 11 bit two’s

complement fixed point data format.

This data format is the same for the digital

regulators and the digital intermediate bus

converters.

When using this format, there are sixteen data bits.

The five high order bits are a two’s complement

number that sets the location of the binary point.

Another way to think of these five bits is that they

set the scale factor.

The eleven low order bits are a two’s complement

that contains the basic number information. Figure

10 shows how the two data bytes are structured.

Example 1: 11 bit linear data to be written to a

PMBus device

Suppose the output overcurrent threshold is to be

set to 10 A using the IOUT_OC_FAULT_LIMIT

command. There are many possible values of the

two data bytes depending on where the binary

point (scaling factor) is set. To use the smallest

possible resolution, start by calculating the scaling

factor

Table 4 shows the possible ranges of values and

resolutions that can be expressed with the 11 Bit

Linear format.

Note that for any given 5 bit binary point locater

value, the smallest resolution is about 0.1% (1 part

in 1024).

Note that when calculating N, we need a function

that takes the integer portion (truncates). If the

result were rounded up, then the size of the least

significant bit (LSB) would be so small that later,

when the 11 bit data value is calculated, it would

exceed the maximum values of +1023 or -1024.

Now use the scaling factor to calculate the

resolution of the overcurrent threshold:

Parameter Value Calculation

Maximum Positive Value 33,521,664 (0x7FFF) 2+15 x (210 – 1) = 2+15 x 1023

Minimum Positive Resolution (LSB) 15.26 × 10-6 (0x8001) 2-16 x 1

Minimum Negative Value Resolution -15.26 × 10-6 (0x87FF) 2-16 x -1

Maximum Negative Value -33,554,432 (0x7C00) 2+15 x -210 = 2+15 x (-1024)

Table 4: 11 Bit linear format data ranges and resolutions

Figure 10: 11 bit linear format data byte structure

14/28710-FGB 100 378 Rev A 2024-03-28 16

Calculate the number of LSBs:

Put the scaling factor and data bits together to

form the two data bytes:

Remembering that the low order byte is

transmitted first, the Main would send the

value 0x80 followed by 0xD2.

Note that this value is not unique. Other

scaling factors could be used, resulting in a

different binary representation of the same

decimal value.

Example 2: 11 decoding 11 bit linear data

received from a PMBUS device

Suppose that a digital intermediate bus

converter returns the data bytes 0x85 followed

by 0xE0 in response to the READ_IOUT

command. The question is what output

current is the device reporting? Assembling

the two data bytes into the correct order

gives the hexadecimal value 0xE085. If we

separate this into the five most significant and

11 least significant bits:

The scale factor is 0b11100 which is -4

(decimal). The data bits are 0b000 1000 0101

which is 133 (decimal). The value of the

output current is calculated as:

Non-numeric data

Many PMBus commands, such as those that

read the status of the PMBus device or

configure the fault response, have a non-

numeric format. The details of these formats

are given in Part II of the PMBus specification.

Figure 11: Data bytes for 11 bit linear format example 1

Figure 12: Data bytes for 11 bit linear format example 2

14/28710-FGB 100 378 Rev A 2024-03-28 17

PMBus
commands on the
bus
When PMBus commands are sent over the bus, the

general structure of the transaction is:

• 7 bit address followed by a zero to indicate

that the next data byte is being written to the

Secondary device

• A one byte command code that instructs the

receiving device to take some action

• And for most PMBus commands, data is

either written to the device (such as the data

setting the output voltage) or read from the

device (such as a reading of the current

output voltage)

Example PMBus transaction 1: A command

with one byte of data written to a PMBus

device

Figure 13 illustrates a bus transaction for a PMBus

command that writes one byte of data to the

PMBus device.

This transaction proceeds as follows:

• The Main device puts a START condition on

the bus to notify the Secondary devices that

a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 0 (to indicate that this

will be a transaction in which the Main writes

data to the PMBus device).

• The PMBus device acknowledges its address

and that it is ready to receive data (ACK).

• The Main bus device sends the one byte

command code.

• The PMBus device ACKs the received

command code.

• The Main device puts a REPEATED START

condition on the bus to notify the Secondary

devices that a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 1 (to indicate that this

will be a transaction in which the Main reads

data from the PMBus device).

• The PMBus device acknowledges its address

and that it is ready to send data (ACK).

• The PMBus device sends the first data byte

for the received command code.

The Main device ACKs the received data

byte.

• The PMBus device sends the second data

byte for the received command code.

• The Main device does not acknowledge

(NACKs) the received data byte.

• The Main device puts a STOP condition on

the bus to notify the Secondary devices that

the transaction is complete.

Please consult the microcontroller’s

documentation for information on how to

implement the REPEATED START and read of data

from a PMBus device.

Figure 13: Example PMBus transaction protocol with one byte

written to the PMBus device

14/28710-FGB 100 378 Rev A 2024-03-28 18

Example PMBus transaction 3: A command

that reads a block of data from a PMBus

device

The transaction proceeds as follows:

• The Main device puts a START condition on

the bus to notify the Secondary devices that

a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 0 (to indicate that this

will be a transaction in which the Main writes

data to the Secondary device).

• The PMBus device acknowledges its address

and that it is ready to receive data (ACK).

The Main bus device sends the one byte

command code.

The PMBus device ACKs the received command

code.

• The Main device puts a REPEATED START

condition on the bus to notify the Secondary

devices that a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 1 (to indicate that this

will be a transaction in which the Main reads

data from the PMBus device).

• The PMBus device acknowledges its address

and that it is ready to send data (ACK).

• The PMBus device sends the number of bytes

of data to follow (byte count). The byte

count does not include the byte including

the byte count information.

• The Main device ACKs the received data

byte with the byte count.

• The PMBus device sends the first data byte

for the received command code.

• The Main device ACKs the received data

byte.

• The PMBus device sends the second data

byte for the received command code.

• The Main device ACKs the received data

byte.

• The sending of data bytes and

acknowledgment by the Main continues until

the PMBus device sends the Nth data byte.

• The Main device does not acknowledge

(NACKs) the reception of the Nth data byte.

• The Main device puts a STOP condition on

the bus to notify the Secondary devices that

the transaction is complete.

Responding to a NACK from a
PMBus device

If a PMBus device does not acknowledge a

command or data byte, the current transaction

should be ended by putting a STOP condition on

the bus. Any further data transfer cannot be

considered reliable. There is no immediate way to

know why the PMBus device did not acknowledge

the command or data byte. The Main bus device

must interrogate the PMBus device using status

commands to determine the cause of the NACK.

Figure 14: PMBus command that reads a block of data from a

PMBus device

14/28710-FGB 100 378 Rev A 2024-03-28 19

Packet error
checking

SMBus packet error checking

The SMBus specification provides for an optional

basic means to detect (but not correct) errors in

the packet – packet error checking (PEC). In the

SMBus packet error checking a one byte cyclic

redundancy check (CRC) sum is added at the end

of each transaction. Each device can compare

the received checksum, calculated by the sender,

with the checksum it computes from the received

data. If the checksums match there is good

assurance that the data was received

uncorrupted. The digital regulators and digital

intermediate bus converters support SMBus packet

error checking.

Calculating the checksum

The checksum is calculated using all data bytes

plus the byte containing the address and READ/

WRITE# bit. The formula for calculating the

checksum is:

C(x) = x8 + x2 + x +1

There are several ways of calculating the

checksum. Some use a pure arithmetic

computation, which uses less memory but takes

more time. Other algorithms use a lookup table

which is less computation time but takes more

memory.

Appendix 1 gives an example in C language of a

way to calculate the PEC checksum in a direct

way (no tables). There is no best algorithm for all

applications and the choice of algorithm is left to

the PMBus Main device firmware engineer.

Checking PEC support in a
Secondary device

Before using packet error checking with a PMBus

device, the Main should determine if the device

supports packet error checking. This is done with

the PMBus QUERY command.

If bit [7] of the data byte returned in response to a

QUERY command is set (=1), the device supports

packet error checking. If bit [7] is cleared (= 0) then

the device does not support packet error

checking.

Writing data with a PEC byte

Figure 16 illustrates a PMBus WRITE WORD

transaction using packet error checking.

The transaction proceeds as follows:

• The Main device puts a START condition on

the bus to notify the Secondary devices that

a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 0 (to indicate that this

will be a transaction in which the Main writes

data to the PMBus device).

• The PMBus device acknowledges its address

and that it is ready to receive data (ACK).

• The Main bus device sends the one byte

command code.

Figure 15: PMBus WRITE WORD command with packet error

checking byte

14/28710-FGB 100 378 Rev A 2024-03-28 20

• The PMBus device ACKs the received

command code.

• The Main bus sends the low data byte.

• The PMBus device ACKs the received data

byte.

• The Main bus sends the high data byte.

• The PMBus device ACKs the received data

byte.

• The Main bus sends the packet error

checking data byte.

• The PMBus device ACKs the received data

byte.

• The Main device puts a STOP condition on

the bus to notify the Secondary devices that

the transaction is complete.

Reading data with a PEC byte

Figure 16 illustrates a PMBus READ WORD

transaction using packet error checking.

The transaction proceeds as follows:

• The Main device puts a START condition on

the bus to notify the Secondary devices that

a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 0 (to indicate that this

will be a transaction in which the Main writes

data to the Secondary device). .

• The PMBus device acknowledges its address

and that it is ready to receive data (ACK).

• The Main bus device sends the one byte

command code.

• The PMBus device ACKs the received

command code.

• The Main device puts a REPEATED START

condition on the bus to notify the Secondary

devices that a transaction is beginning.

• The Main sends the 7 bit address of the

device to receive the data followed by the

READ/WRITE# bit set to 1 (to indicate that this

will be a transaction in which the Main reads

data from the PMBus device).

• The PMBus device acknowledges its address

and that it is ready to send data (ACK).

• The PMBus device sends the first data byte

for the received command code.

• The Main device ACKs the received data

byte.

• The PMBus device sends the second data

byte for the received command code.

• The Main device ACKs the received data

byte. This notifies the PMBus device that the

Main is expecting another data byte.

• The PMBus device sends the packet error

checking data byte.

• The Main device does not acknowledge

(NACKs) the packet error checking data

byte.

• The Main device puts a STOP condition on

the bus to notify the Secondary devices that

the transaction is complete.

Please consult the microcontroller’s docu-

mentation how to implement the REPEATED

STARTand read of data from a PMBus device.

Figure 16: PMBus WRITE WORD command with packet error

checking byte

14/28710-FGB 100 378 Rev A 2024-03-28 21

No PEC support

If you are using PEC with a PMBus Device that does

not support packet error checking then the Main

sends a packet error checking data byte to a

PMBus device that does not support packet error

checking, it will treat this as a communications fault

(too many data bytes for the command).

If a Main device attempts to read a packet error

checking byte from a device that does not support

packet error checking, the device will:

• Send a 0xFF value (by not driving the data

line while the Main is requesting the data bits)

and

• Declare a communications fault because

the Main asked for more data bytes than are

specified for the command.

Handling a failed checksum
comparison

The SMBus packet error checking only provides a

means to detect errors. There is no ability to correct

corrupted data. If a PMBus Main device receives

data for which the checksums do not match the

only recourse is to read the data again.

SALERT
(SMBALERT#)
protocol
The SMBALERT# protocol is an important element of

the SMBus and PMBus protocols. Suppose a PMBus

has a change condition, an overtemperature

condition for example, the Main bus device should

be notified. One way to do that would be for the

PMBus device to become a Main bus and send a

message. However, multi-Main bus systems are not

favored due to issues with congestion and conflict.

The notification method that is preferred, and

implemented in our digital products, is for the

PMBus device to use a separate, dedicated signal

line to notify the Main bus of a change of

condition. That signal in our digital products is the

SALERT.

One possible implementation is for each digital

product to have its SALERT signal connected to a

dedicated input on the Main bus device. With this

implementation the Main bus knows instantly and

unambiguously which digital product needs

attention.

The disadvantage to this approach is the number

of signal lines on the system board and the number

of I/O pins needed on the Main bus

microcontroller.

Another possible implementation is to have one

SALERT line that is common to all of the digital

products and that terminate on one I/O pin of the

microcontroller. With this approach, the Main bus

must use the SMBALERT# protocol to determine

which digital product or products need attention.

An important aspect of the alert protocol is that

the SALERT outputs on the digital products are all

open drain. It is possible that more than one digital

product or other PMBus device is simultaneously

asserting the SALERT signal by pulling the signal low.

With that in mind, here is how the alert protocol

works.

First, one or more digital products or other PMBus

devices assert the SALERT signal by pulling it low.

The SALERT input to the microcontroller can either

be a polled I/O pin or a pin with interrupt-on-

change functionality. Once the microcontroller

detects the SALERT has been asserted, it reads the

SMBALERT Response Address (SRA).

The seven bit SMBALERT Response Address, 0001

100, is a special and reserved SMBus address.

14/28710-FGB 100 378 Rev A 2024-03-28 22

When a PMBus device detects the SRA with the

READ/ WRITE# bit set for read, and it is asserting the

SALERT signal, it responds with its address. If more

than one device responds, the open-drain wired-

AND connection of the SALERT signal assures that

the PMBus device with the lowest address will have

a valid response. A PMBus device that attempts to

send a 1 as part of its address will see that the

value on the bus is a 0. That indicates to the PMBus

device that it has lost the bit-wise arbitration. It

stops trying to send its address and leaves the

SALERT signal asserted. The bitwise arbitration is

illustrated in Figure 17.

Note that is the only time a Main bus device

addresses a PMBus device with the READ/WRITE#

bit set for a read.

The Main bus device now has the address of the

PMBus device that was asserting the SALERT signal.

The Main bus should then check the state of the

SALERT signal.

If another PMBus device is asserting SALERT, the

SALERT signal reMains low. The Main bus device

should then send another read to the SMBALERT#

Response Address. The Main bus will then get the

address of another PMBus device that was

asserting SALERT.

Again, the Main bus should check SALERT. If SALERT

is high, then no more PMBus devices are asserting

SALERT. If SALERT is still low, the Main bus device

should keep reading the SRA until SALERT is no

longer asserted.

At that point, the Main bus can follow its

programmed response to an alert condition. For

example, the next step might be to send a

STATUS_BYTE or STATUS_WORD command to each

device that was asserting SALERT to get the first

level of diagnostic information. With this status

information, the Main can decide to take action

on the information it has to make inquiries to the

Secondary about its status. What action to take in

case of a fault or abnormal condition is the

decision of the system engineer and is not part of

the PMBus specification.

Figure 17: Alert response bitwise arbitration

14/28710-FGB 100 378 Rev A 2024-03-28 23

Other PMBus
signals
The PMBus specification provides for two

dedicated signals in addition to the standard

SMBus signals (data, clock and SMBALERT#).

CTRL (PMBus CONTROL)

The PMBus CONTROL signal (labeled as CTRL on the

product datasheets) can be used to turn the

regulator output on and off.

How the CTRL signal works is configured with the

PMBus ON_OFF_CONFIG command. For example,

the CTRL signal can be configured as active high

or active low. Please see AN302, PMBus Command

Set, and the PMBus specifications for the details.

The CTRL signal can be driven with a general

purpose I/O signal that operates from either 3.3 V

or 5.0 V power supply.

WP (Write Protect)

The PMBus specification also provides for a Write

Protect (WP) command that can be used to

prevent unwanted or unauthorized changes to the

PMBus device configuration. Our digital products

do not provide a Write Protect pin and this

functionality is not supported.

PMBus variations
from SMBus
specification

Signals

The PMBus specification adds two signals, CTRL

(CONTROL) and WRITE PROTECT (WP) that are not

in the SMBus specification. These are described

below.

Speed

The maximum bus speed described in the SMBus

specification (v3.2) is 1 MHz. The PMBus

specification (v1.4) also allows bus speeds up to 1

MHz.

All of our digital devices can operate at 100 kHz.

Our latest digital intermediate bus converters and

POL regulators can also support bus speeds of 400

kHz and 1 MHz, but please check individual

datasheets for full compatability information.

It is possible to have both devices on the same bus

and communicate with them at different data

rates (bus speeds). However, this requires care on

the part of the programming of the Main device. If

possible, operating the bus only at the lowest

maximum speed supported by any device on the

bus is the recommended practice.

If the bus is operated at 400 kHz or 1 MHz, it is up to

the system engineer to assure that all timing

parameters are met under all conditions.

GROUP protocol

With the standard SMBus transaction protocols and

the PMBus requirement that a PMBus device start

processing the received command when the STOP

condition is detected, only one device can be

given a command at a time. It is not possible to

send commands to multiple PMBus devices and

have them respond simultaneously.

To eliminate this restriction, the PMBus specification

added the GROUP protocol. This protocol uses

REPEATED START conditions to essentially send

commands to many PMBus devices in one bus

transaction. At the end of the transaction, when

the STOP condition is detected, the multiple PMBus

devices start processing the received commands

(which do not have to be the same command for

each device) simultaneously.

This would be useful, for example, during margin

testing. All of the PMBus devices on the bus could

be commanded to change their margin states

simultaneously.

https://flexpowermodules.com/resources/fpm-appnote302-pmbus-command-set

14/28710-FGB 100 378 Rev A 2024-03-28 24

When using a general purpose microcontroller to

manage multiple PMBus devices there can be a

problem with the GROUP protocol. Most general

purpose microcontrollers with hardware I²C

interfaces do not support the multiple REPEATED

START conditions in one transaction. Consult the

microcontroller manufacturer’s documentation to

determine whether or not the GROUP protocol can

be used in your system.

Summary
This application note has shown how to use a

general purpose microcontroller to interface with

Flex Power Modules digital products using the

PMBus protocol. Firmware engineers writing code

for this purpose are strongly encouraged to read

the SMBus and PMBus specifications for more

detailed information.

The first key concept is the structure of the PMBus

transactions over the SMBus.

First, it is important to understand the difference in

packet construction when writing data to a PMBus

device and when reading from a PMBus device.

Next, the various data formats must also be

understood and applied properly. Examples were

given to show how data is converted to and from

real world values and the PMBus data formats.

The use of the SMBus packet error checking

protocol was then explained. While the 8 bit CRC

checksum is not perfect and does not provide a

means to correct errors, a match of the checksums

provides high confidence that the data was

received correctly.

Finally, the use of the SALERT signal and the SMBus

SMBAlert protocol was explained. The SALERT signal

provides the PMBus devices a way to quickly signal

the Main that a device has a warning, fault, or

other condition that needs attention. This

eliminates the need for the Main to constantly and

continuously poll the PMBus devices for their status,

reducing the load on the Main device as well as

minimizing traffic on the bus

14/28710-FGB 100 378 Rev A 2024-03-28 25

Appendix 1: Example PEC checksum
calculation code
The code below is provided as an example of one way to calculate the SMBus PEC checksum using the

direct method.

14/28710-FGB 100 378 Rev A 2024-03-28 26

Flex Power Modules, a business line of Flex, is a leading manufacturer and solution provider of scalable DC/DC power

converters primarily serving the data processing, communications, industrial and transportation markets. Offering a wide

range of both isolated and non-isolated solutions, its digitally-enabled DC/DC converters include PMBus compatibility

supported by the powerful Flex Power Designer.

EMEA (Headquarters) | Torshamnsgatan 28 A, 16440 Kista, Sweden

APAC | 33 Fuhua Road, Jiading District, Shanghai, China 201818

Americas | 6201 America Center Drive, San Jose, CA 95002, USA

The content of this document is subject to revision without notice due to continued progress in methodology, design and manufacturing.
Flex shall have no liability for any error or damage of any kind resulting from the use of this document.

pm.info@flex.com

flexpowermodules.com

flexpowerdesigner.com

youtube.com/flexintl

twitter.com/flexpowermodule

flexpowermodules.com/wechat

linkedin.com/showcase/flex-power-modules

http://www.flexpowerdesigner.com/
mailto:pm.info@flex.com
https://www.flexpowermodules.com/
https://www.flexpowerdesigner.com/
https://www.youtube.com/flexintl
https://www.twitter.com/flexpowermodule
https://flexpowermodules.com/wechat
https://linkedin.com/showcase/flex-power-modules
mailto:pm.info@flex.com
https://www.flexpowermodules.com
https://www.flexpowerdesigner.com
https://www.youtube.com/flexintl
https://www.twitter.com/flexpowermodule
https://flexpowermodules.com/wechat
https://linkedin.com/showcase/flex-power-modules

	Introduction
	Forum websites
	PMBus – powersystem managementbus protocoldocumentsThese
	SMBus – systemmanagement busdocuments
	PMBus dataformats
	PMBuscommands on thebus
	Packet errorchecking
	SALERT(SMBALERT#)protocol
	Other PMBussignals
	PMBus variationsfrom SMBusspecification
	Summary
	Appendix 1: Example PEC checksumcalculation code

