

Key features

- Horizontal mounting nonisolated DC/DC converter
- High power density IBC up to 0.9 kW/cm³
- Ratio conversion 4:1, 1 kW continuously, 3 kW peak power
- Peak efficiency 97.2 %
- LGA industry standard footprint
 and pinout
- Optimized thermal design for cold wall mounting
- MTBF 7.43 million hours
- Meets safety requirements per IEC/EN/UL 62368-1
- PMBus configuration

Soldering methods

• Pb free SMD reflow

BMR313

Ultra-small Intermediate Bus Converter

The BMR313 is a powerful and compact digital non-isolated, unregulated DC/DC converter designed to support Artificial Intelligence applications.

It can also be used for other high-power IBC requirements which have limited boardspace available.

The converter has a ratio conversion of 4:1 and provides 1000 W continuous power and has peak power capabilities of up to 3000 W.

This converter can deliver a power density of more then 900 W/cm^3 or 15 kW/in^3 when delivering peak power to the load.

This 48 to 12 V IBC solution also complements our VRM and PoL solutions used to further convert the 12 V intermediate bus to downstream core voltages.

Key electrical information

Parameter	Values
Input range	38-60 V
Output voltage	9.5-15 ∨
Output current	80 A
Output power	1000 W
Peak power	3000 W

<u>Mechanical</u>

23.4 x 17.8 x 7.65 mm

Application areas

• Designed for AI applications

Product options

The table below describes the different product options.

Example:	BMR313	1	01	1	/001	С	Definitions
Product family	BMR313						
Mech. solution		1					0 = Open frame 1 = Baseplate, LGA
Sequence number			01				01 = Input 38-60 V, Output 9.5 -15 V, 1 kW continuously, 3 kW peak
Function				1			1 = Stacked module
Configuration code					/001		001 = Default config for Input 38-60 V, Output 9.5-15 V, 1 kW continuously, 3 kW peak
Packaging options						С	C = Antistatic tape and reel package

For more information, please refer to Part 3 Mechanical information.

If you do not find the variant you are looking for, please contact us at <u>Flex Power Modules</u> .

Order number examples

Part number	Vin	Output	Configuration
BMR3131011/001C	38-60 V	9.5-15 V / 80 A / 1000 W	Baseplate / stacked module / antistatic tape
DIVING 131011/001C	30-00 v	7.J-1J V / OU A / 1000 VV	and reel package

Absolute maximum ratings

Stress in excess of our defined absolute maximum ratings may cause permanent damage to the converter. Absolute maximum ratings, also referred to as *non-destructive limits*, are normally tested with one parameter at a time exceeding the limits in the electrical specification.

Characteristics	min	max	Unit
Operating temperature (T _{P1})	-20	125	°C
Storage temperature	-40	125	°C
Input voltage (Vin) continious operation	-0.3	60	V
Input voltage transient	-0.3	68	V
Cout	0.1	6	mF
Signal I/O voltage (EN, PG, ALERT, ADDR, SCL, SDA)	-0.3	7	V

Reliability

The failure rate (λ) and mean time between failures (MTBF= 1/ λ) is calculated at max output power and an operating ambient temperature (T_A) of +40 °C. Flex Power Modules uses Telcordia SR-332 Issue 4 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ). Telcordia SR-332 Issue 4 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

	Mean	90% confidence level	Unit
Steady-state failure rate (λ)	135	169	nfailures/h
Standard deviation (σ)	27.2		nfailures/h
MTBF	7.4	5.9	MHr

Typical application diagram

Capacitor values are defined in the Electrical Specification tables. The EMI filter is defined in the EMC Part 2.

Electrical specifications for BMR3131011/001

13.5 V, 80 A (220 A peak) / 1000 W (3000 W peak)

Min and max values are valid for: $T_{P1} = -20$ to + 95 °C, $V_{in} = 38$ to 60 V, $I_{out} = 80$ A, unless otherwise specified under conditions. Typical values given at: $T_{P1} = +25$ °C, $V_{in} = 54$ V, max P_{out_TDP} , unless otherwise specified under conditions, see Note 1.

Additional external C_{in} = 470 μ F + 2 x 2.2 μ F ceramic, C_{out} = 2 x 470 μ F

Characteristic	conditions	minimum	typical	maximum	unit
Key features					
	Peak		97.2		%
	100 % of Pout_TDP		96.4		%
Efficiency (ŋ)	50 % of P_{out_TDP} V _{in} = 48 V		97.1		%
	100 % of P_{out_TDP} V _{in} = 48 V		96.0		%
P_{out_TDP} thermal design power (TDP)	See Note 1		1000		W
$P_{out_{MAX}}$ peak power (t ≤ 0.25 s)	See Note 1		3000		W
Power dissipation	100 % of Pout_TDP		39.7		W
Switching frequency (f_s)	0-100 % of Pout_TDP		1250		kHz
Recommended capacitive load		40	470	6000	μF
Input characteristics					
Input voltage range (V _{in})		38		60	V
Input idling power	P _{out} = 0 W		7.1		W
Input standby power	(turned off with EN)		580		mW
Input OVP				68	V
Internal input capacitance			14.4		μF
Recommended external input capacitance	See Note 2	100	150		μF

Note 1: Max. output current is rated at 220 A. Max power is \leq 3000 W and continuous power (thermal design power TDP) is \leq 1000 W depending on thermal conditions.

Note 2: Typical value (recommended) is 100 μF + 5*10 μF

Electrical specifications for BMR3131011/001

13.5 V, 80 A (220 A peak) / 1000 W (3000 W peak)

Min and max values are valid for: $T_{P1} = -20$ to + 95 °C, $V_{in} = 38$ to 60 V, $I_{out} = 80$ A, unless otherwise specified under conditions. Typical values given at: $T_{P1} = +25$ °C, $V_{in} = 54$ V, max P_{out_TDP} , unless otherwise specified under conditions, see Note 1.

Additional external C_{in} = 470 μ F + 2 x 2.2 μ F ceramic, C_{out} = 2 x 470 μ F

Characteristic	conditions	minimum	typical	maximum	unit
Output characteristics					
Output voltage	P _{out} = 0 W		13.55		V
Output voltage	Disabled, no load	sabled, no load			V
Output voltage	Disabled, 1 k Ω load		0.15		V
Output current (I _{out})	V _{in} = 38 - 60 V, PG asserted		80	220	А
Output current (Iout)	Before PG, V_{in} = 54 V, C_{out} = 1.0 mF, Note 2			30	А
Output current (I _{out})	Before PG, V_{in} = 38 V, C_{out} = 6 mF, Note 2			10	А
Output voltage droop	I _{out} step from 0 to 80 A		420		mV
Output ripple & noise	tput ripple & noise 20 MHz BW, see Note 3				mV _{p-p}
Internal output capacitance V _{out} = 0V				140	μF
On/off control					
Initialization Time	From V_{in} > 8.5 V to ready to be enabled		31		ms
Turn-off input voltage	Decreasing input voltage		32		V
Turn-on input voltage	Increasing input voltage		37		V
On Delay Time	From EN asserted to ramp start		0		ms
Ramp-up time	From 10% to 90% of V_{out} , $I_{out} = 0$ A		2.5		ms
Start-up time	from V_{in} connection to 90% of V_{out}		36		ms
Enable start-up time	From EN asserted to 100% of V_{out} , $I_{out} = 0$ A		5.2		ms
Logic high: trigger level	EN pin	0.7			V
Logic low: trigger level	EN pin			0.6	V
Source current	EN pin (Internal pull up)			0	μA
Sink current	EN pin			90	μA

Note 1: Max. output current is rated at 220 A. Max power is \leq 3000 W and continuous power (thermal design power (TDP) is \leq 1000 W depending on thermal conditions).

Note 2: Resistive load. The output current value is evaluated after PG. For example, max resistive load before PG at V_{in} = 38 V, C_{out} = 6 mF is a load that gives 10 A current at V_{out} = V_{in} /4 = 9.5 V

Note 3: See Technical Reference: Application and design considerations.

Electrical specifications for BMR3131011/001

13.5 V, 80 A (220 A peak) / 1000 W (3000 W peak)

Characteristic	conditions	minimum	typical	maximum	unit
Protection features					
Input Under Voltage fault limit (IUVP)	Latch (0x80)		32		V
Input Over Voltage fault limit (IOVP)	Latch (0x80)		68		V
Output undervoltage fault limit (UVP)	Latch (0x80)		7.5		V
Output undervoltage warning limit			8.5		V
Output overvoltage fault limit (OVP)	Latch (0x80)		17		V
Output overvoltage warning limit			15.5		V
Over temperature fault limit (OTP)	Latch (0x80)		130		°C
Over temperature warning limit			120		°C
	Comparator OCP threshold	250	300		А
	Comparator OCP response time			1	μs
Over Current Protection (OCP)	Average OCP, IOUT_OC_FAULT_LIMIT	190	240		А
See Note 1	Timed OCP, IOUT_OC_WARN_LIMIT	120	150		А
	Timed OCP response time		88		ms
	Timed OCP response time set point accuracy		0.55		ms
Short circuit output current	T _{P1} = 25 °C, start against short			6.5	А
Protection response time (IUVP, IOVP, UVP, OVP, OTP, Average OCP)	See Note 2	0.75		1	ms

Note 1: Response time = transient duration required to trig an OCP fault. See section Over Current Protection in "Technical Reference: Application and design considerations" for a detailed description of the OCP functionality.

Note 2: The threshold is compared against a moving average value of four samples with 0.25 ms sampling interval. In addition, up to 0.3 ms may pass after a fault is trigged before switching stops.

Electrical specifications for BMR3131011/001

13.5 V, 80 A (220 A peak) / 1000 W (3000 W peak)

Characteristic	conditions	minimum	typical	maximum	unit
Monitoring & Control					
UVLO _{VI} - Under Voltage Lock-Out	V _{in} rising threshold		8.5		V
UVLOVI- Under Volidge Lock-OUI	Hysteresis		2.5		V
Power Good Delay Time	From V_{out} = 100 % to PG asserted		0.8		ms
	Low to high transition		100		% V _{out}
Power Good Threshold	High to low transition, Note 1				
V _{IL} - Logic input low	SCL, SDA			0.8	V
V _{IL} - Logic input high	SCL, SDA	1.35			V
V _{OL} - Logic output low	SDA, ALERT, PG			65	mV
IoL - Logic output low sink current	SDA, ALERT, PG			5	mA
I _{LEAK} - Logic leakage current	SDA, SCL, ALERT, PG			10	μA
C _{L_PIN} - Logic input capacitance	SDA, SCL, EN		10		рF
f _{SMB} - SMBus Operating frequency		10		400	kHz
EN - Enable	See page 5 "On/Off control"				

Note 1: Power Good is deasserted when the output voltage is disabled, regardless of the output voltage level.

In the table below all PMBus commands are written in capital letters.

T_{P1} = -20 to + 95 °C, V_{in}= 38 to 60 V, unless otherwise specified under conditions.

Typical values given at: T_{P1} = +25 °C, V_{in} = 54 V, max P_{out_TDP}, unless otherwise specified under conditions

For more detailed information please refer to Technical Reference Document: PMBus commands. This product is supported by the <u>Flex Power Designer tool</u>.

Command	Conditions	minimum	typical	maximum	Unit
Monitoring accuracy					
Input voltage READ_VIN			±1		%
Output voltage READ_VOUT			±2		%
Output current READ_IOUT	$V_{in} = 54 V$, $I_{out} = 80 A$		±5		%
Temperature READ_TEMPERATURE_1	T ≥ 25 °C		±3		°C

Electrical graphs for BMR3131011/001 13.5 V, 80 A (220 A peak) / 1000 W (3000 W peak)

Efficiency

Efficiency vs. output current and input voltage at T_{P1} = +25 °C.

Output Ripple and Noise

Vin = 54 V, Iout = 80 A, 20 MHz BW. Scale 10 mV/div, 500 ns/div.

Startup

Output enabled by EN pin. $V_{in} = 54 \text{ V}$, $I_{out} = 1 \text{ A}$ Scale from top: 2, 5, 2 V/div, 1 ms/div.

Power dissipation

Dissipated power vs. load current at T_{P1} = +25 °C.

Output voltage droop

Output voltage vs output current.

Shutdown

Output disabled by EN pin. $V_{in} = 54 \text{ V}$, $I_{out} = 1 \text{ A}$ Scale from top: 2, 5, 2 V/div, 5 ms/div.

flex.

Part 2: EMC EMC specifications

Conducted EMI measured according to EN55022 / EN55032, CISPR 22 / CISPR 32 and FCC part 15J (see test set-up below). The fundamental switching frequency is 1.25 MHz for BMR313. The EMI characteristics below is measured at $V_{in} = 54$ V and max I_{out} .

EMI without filter. (Blue graph = QP values)

EMI with an optional external filter, EN55032. Test method and limits are the same as EN55022. (Blue graph = QP values)

Optional external filter for Class B

Suggested external input filter in order to meet Class B in EN 55022 / EN 55032, CISPR 22 / CISPR 32 and FCC part 15J.

Test set-up

Filter components: $C1 = 2 \times 2.2 \ \mu\text{F} + 100 \ \mu\text{F}$ (Oscon) $C2 = 5 \times 10 \ \mu\text{F}$ $C3 = 5 \times 10 \ \mu\text{F} \ L1 = 100 \ n\text{H}$

C4, L2 not populated.

Layout recommendations

The radiated EMI performance of the product will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis. A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance.

Part 3: Mechanical information BMR3131011/001: SMD mounted, baseplate version

The mechanical information is based on a module which is SMD mounted and has a baseplate.

Side view

Top view

Product overall X/Y dimension including both top and bottom boards.

Weight: typical 10.1 g All dimensions in mm [inches] Tolerances unless specified: x.x ±0.5 mm [0.02 inch] x.xx ±0.25 mm [0.01 inch] (not applied on footprint or typical values)

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.

BMR3131011/001: SMD mounted, baseplate version

The mechanical information is based on a module which is SMD mounted and has a baseplate.

Pin layout and footprint top view through the product

Recommended footprint top view through the product

Part 3: Mechanical information

TOP VIEW - Pin-out description and pin positions

Pin	Designation	Туре	Function
1	+IN	Power	Input voltage
2	PG	Open Drain	Power good, active high
3	EN	Input	Enable, active high
4	+IN	Power	Input voltage
5	GND	Power	Power ground
6	VOUT	Power	Output voltage
7	ADDR	Input	PMBus address pin strap
8	SDA	Input/Output	PMBus data
9	SCL	Input	PMBus clock
10	ALERT	Open Drain	Alert signal, active low. Asserted when an over current warning condition or an over temperature warning condition occurs. Can be connected to GND if unused.

Part 4: Thermal considerations

Thermal considerations

General

The product is designed with power switches on top to operate with top side cooling towards a heat sink or a cold plate. This is required to handle operation with high load. Cooling is also achieved by conduction to the host board and surrounding air. Sufficient cooling must be provided to ensure reliable operation.

The Output Current Derating graph found in the Electrical Specification section provides the available output current versus case temperature and host board temperature.

Test Setup – Cold Plate

The product is tested in a box with two heater/coolers; one as a cold plate to control the temperature at the top of the product, another on the bottom side of the test board to control the host board temperature. The test board used is 130 x 160 mm in size with 1.6 mm thickness and 6 layers of 3 oz.

Test set-up: Cold plate

Definition of product operating temperature

The product operating temperatures are used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at positions P1, P2. The temperature at these positions (T_{P1}, T_{P2}) should not exceed the maximum temperatures in the table below. The number of measurement points may vary with different thermal design and topology. Temperatures above maximum are not allowed and may cause permanent damage.

Top view

Position	Description	Max. Temp.
P1	MOSFET case	T _{P1} = 125 °C
P2	Magnetic core	T _{P2} = 125 °C

Side view

flex.

Part 4: Thermal considerations

Thermal graphs

Output current derating

Max average output current vs. cold plate temperature (x-axis) and host board temperature. Thermal interface gap pad 1.0 mm, 8 W/mK.

Peak current capability

Max peak output current vs pulse duration and PMBus monitored temperature when pulse starts. Initial lout = 80 A. Limit given by max internal junction temperature (150 °C) of hotspot component.

For more information, please refer to our <u>thermal models</u> on the website.

flex.

Part 5: Packaging Packaging information

The products are delivered in antistatic carrier tape (EIA 481 standard).

Carrier Tape Specifications		
Material	PS, Antistatic	
Surface resistance	< 10 ⁷ Ω/square	
Bakabilty	The tape is not bakeable	
Tape width, W	44 mm [1.73 inch]	
Pocket pitch, P1	32 mm [1.26 inch]	
Pocket depth, K0	8.4 mm [0.33 inch]	
Reel diameter	330 mm [13.0 inch]	
Reel capacity	180 products /reel	
Reel weight	2400 g/full reel	

Part 6: Revision history Revision table

Revision number	revision change	date	revisor
Rev. A	New document	2023-12-21	KARFWAHL
Rev.B	Mechanical drawing Top View Bottom board updated	2024-02-14	KARFWAHL
Rev. C	Clarified Output current derating diagram text Footprint drawing updated	2024-02-21	KARFWAHL
Rev. D	Update of image page 1	2024-07-02	KARTWAER
Rev. E	Corrected typos in Product options and Order number examples	2024-10-08	JIDGEZOU
Rev. F	Mechanical drawing side & top view rotated to 180° and marking position indicated in packaging information	2024-10-22	KARSRJAG
	Minor changes to mechanical information and packaging information	2024-10-23	JIDJLIAA
Rev.G	Corrected typos on page 8.	2025-02-14	KARJNILS

© Flex Power Modules 2024

The information and specifications in this document is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change

Flex Power Modules, a business line of Flex, is a leading manufacturer and solution provider of scalable DC/DC converter primarily serving the data processing, communications, industrial and transportation markets. Offering a wide range of both isolated and non-isolated solutions, its digitally-enabled DC/DC converters include PMBus compatibility supported by the powerful <u>Flex Power Designer</u>.

