

BMR323

8:1 fixed ratio digital IBC (600 W)

BMR323 is a compact, unregulated and non-isolated intermediate bus converter (IBC). It is intended for applications in need of a low voltage IBC for improved system efficiencies. Typical use areas are Al and Cloud Computing applications.

BMR323 delivers a peak efficiency of 97.8% at half load. It offers a PMBus compatible digital interface, and is supported by the Flex Power Designer tool.

Up to 6 units can be used in parallel to supply an overall output power of up to 3600 W.

Key features

- 8:1 fixed ratio IBC
- Small form factor
- Parallelable up to 6 units
- Unregulated
- Non-isolated
- Peak efficiency 97.8%
- Digital interface with PMBus
- Meets safety requirements per IEC/EN/UL 62368-1

Soldering methods

• Pb Free SMD reflow

Key electrical information

Parameter	Values
Input range	40 - 60 V
Output voltage	5 - 7.5 V
Continuous output current	90 A at 54 V _{in}
Continuous output power	600 W
Peak power	1200 W

Mechanical

27.0 x 18.0 x 6.7 mm / 1.06 x 0.71 x 0.26 in

Application areas

• Designed for Artificial Intelligence (AI) applications

Product options

The table below describes the different product options.

Example:	BMR323	1	0	00	/001	С	Definitions
Product family	BMR323						
Pin length options		1					1 = SMD
Baseplate / HS option			0				0 = No baseplate
Other hardware options				00			00 = Standard variant
Configuration code					/001		/001 = PMBus base address 0x6n Note, see resistor table in PMBus addressing section of the Design & Application Guidelines.
Packaging options						С	C = Tape on Reel

For more information, please refer to Part 3 Mechanical information.

If you do not find the variant you are looking for, please contact us at <u>Flex Power Modules</u> .

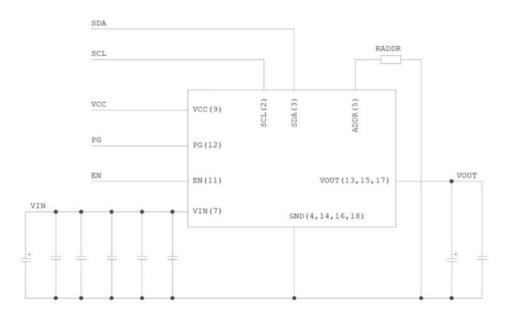
Order number examples

Part number	Vin	Output	Configuration
BMR3231000/001C	40-60 V	5-7.5 V / 90 A / 600 W	No base plate / standard variant / antistatic tape and reel package

Absolute maximum ratings

Stress in excess of our defined absolute maximum ratings may cause permanent damage to the converter. Absolute maximum ratings, also referred to as *non-destructive limits*, are normally tested with one parameter at a time exceeding the limits in the electrical specification.

Characteristics	min	max	unit
Operating temperature (T _{P1})	-40	125	°C
Storage temperature	-55	125	°C
Input voltage (Vin)	-0.3	64	V
5V V _{CC}	-0.3	5.5	V
EN, PG, ALERT, ADDR, SCL, SDA	-0.3	3.6	V


Reliability

Failure rate (λ) and mean time between failures (MTBF= 1/ λ) are calculated based on Telcordia SR-332 Issue 4: Method 1, Case 3, (80% of I_{out_TDP}, T_{P1} = 40°C, Airflow = 200 LFM).

Typical application diagram

	Mean	90% confidence level	Unit
Steady-state failure rate (λ)	134	163	nfailures/h
Standard deviation (σ)	22.6		nfailures/h
MTBF	7.49	6.15	MHr

Capacitor values are defined in the Electrical Specification tables. The EMI filter is defined in the EMC Part 2.

Electrical specifications for BMR3231000/001

6.75 V, 90 A (175A peak) / 600 W (1200 W peak)

Min and Max values are valid for: $T_{P1} = -30$ to $+ 95^{\circ}$ C, $V_{in} = 40$ to 60 V, unless otherwise specified under conditions. Typical values given at: $T_{P1} = +25^{\circ}$ C, $V_{in} = 54$ V, max P_{out_TDP} , unless otherwise specified under conditions, see Note 1.

Additional external C_{in} = 470 μ F, C_{out} = 2x470 μ F

Characteristic	conditions	minimum	typical	maximum	unit
Key features					
	50% of Pout_TDP		97.8		%
	100% of Pout_TDP		97.0		%
Efficiency (ŋ)	50% of P_{out_TDP} V _{in} = 40V		97.2		%
	100% of P_{out_TDP} V _{in} = 40V		96.1		%
P _{out_TDP} thermal design power (TDP)	See Note 1			600	W
P _{out_MAX} peak power	See Note 1			1200	W
Power dissipation	100 % of Pout_TDP		18.7		W
Switching frequency (fs)	0-100 % of P _{out_TDP}		600		kHz
Recommended capacitive load				5000	μF
Input characteristics					
Input voltage range (V _{in})		40	54	60	V
Input idling power	$P_{out} = 0 W$		3.3		W
Input standby power	(turned off with EN)		91		mW
Input OVP			64		V
Internal input capacitance			28.2		μF
Recommended external input capacitance	See Note 2		470		μF

Note 1: Max. output current is rated at 200A at 40Vin. Max power is \leq 1000W and continuous power (thermal design power TDP) is \leq 600W depending on thermal conditions.

Note 2: Typical value (recommended) is 470 μF + 5*2.2 μF

Electrical specifications for BMR3231000/001

6.75 V, 90 A (175A peak) / 600 W (1200 W peak)

Min and Max values are valid for: $T_{P1} = -30$ to $+ 95^{\circ}$ C, $V_{in} = 40$ to 60 V, unless otherwise specified under conditions. Typical values given at: $T_{P1} = +25^{\circ}$ C, $V_{in} = 54$ V, max P_{out_TDP} , unless otherwise specified under conditions, see Note 1.

Additional external C_{in} = 470 µF, C_{out} = 2x470 µF

Characteristic	conditions	minimum	typical	maximum	unit
Output characteristics					
Output voltage	P _{out} = 0 W	5.00	6.75	7.50	V
Output voltage	Disabled, no load		3		mV
Output current (Iout)	V _{in} = 40- 60 V, PG asserted	0	90	135	А
Max start-up load	Before PG			0	А
Output voltage droop	lout step from 0 to 90 A		200		mV
Output ripple & noise	20 MHz BW, see Note 1		22		mV _{p-p}
Internal output capacitance	V _{out} = 0V		250		μF
On/off control	·			· ·	
Turn-off input voltage	Decreasing input voltage		35		V
Turn-on input voltage	Increasing input voltage		37		V
On Delay Time	From EN asserted to ramp start		1.7		ms
Ramp-up time	From 10% to 90% of $V_{\text{out}},I_{\text{out}}$ = 0 A		2.8		ms
Start-up time	From V_{in} > VIN_ON to PG		16		ms
Enable start-up time	FROM EN to PG		15		ms
Logic high: trigger level	EN pin, Voltage Rising	2.1			V
Logic low: trigger level	EN pin, Voltage Falling			1.9	V
Sink current	EN pin		10		mA

Note 1: See Technical Reference: Application and design considerations.

Electrical specifications for BMR3231000/001

6.75 V, 90 A (175A peak) / 600 W (1200 W peak)

Characteristic	conditions	minimum	typical	maximum	unit
Protection features					
Input Over Voltage fault limit (IOVP)	Latch		64		V
Output undervoltage fault limit (UVP)	Latch		2		V
Output overvoltage fault limit (OVP)	Latch		8.25		V
Over temperature fault limit (OTP)	Latch		125		°C
Over temperature warning limit (OTW)			90		°C
Over Current Protection (OCP)	Fast applicable on pulses, shorter than 5 ms.	200	230	250	A
	Average, Note 1	150	155	200	А
	IUVP, IOVP, UVP, OVP, OTP		2		μs
Response times	Fast OCP, 77-160 A		17		ms
	Average OCP, 77A-140 A		170		ms
5.0 V Vcc Auxiliary power					
Voltage		4.5	5.0	5.5	V
Current			250	360	mA

Note 1: See Technical Reference: Application and design considerations. The threshold is compared against a moving average value of four samples with 0.25 ms sampling interval. In addition, up to 0.3 ms may pass after a fault is trigged before switching stops.

Electrical specifications for BMR3231000/001

6.75 V, 90 A (175A peak) / 600 W (1200 W peak)

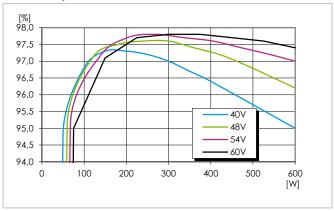
Characteristic	conditions	minimum	typical	maximum	unit		
Monitoring & Control							
	V _{in} ON	36.1	36.8	37.5	V		
UVLO _{VIN} -Under Voltage Lock-Out	V _{in} OFF	33.5	34.2	34.9	V		
Power Good Delay Time	From V _{out} = 100 % to PG asserted		6.5		ms		
Power Good Threshold	Low to high transition		4.8		V		
	High to low transition, Note 1		4.5		V		
VIL - Logic input low	SCL, SDA			1.0	V		
V _{IL} - Logic input high	SCL, SDA	2.3			V		
V _{OL} - Logic output low	SDA, PG			400	mV		
I_{OL} - Logic output low sink current	SDA, PG			20	mA		
I _{LEAK} - Logic leakage current	SDA, SCL, PG	-5		5	μA		
C _{LPIN} - Logic input capacitance	SDA, SCL, EN		7		рF		
f _{SMB} - SMBus Operating frequency		100		400	kHz		
EN - Enable	See page 5 "On/Off control"						

In the table below all PMBus commands are written in capital letters.

 $T_{P1} = -20$ to + 95 °C, V_{in} = 40 to 60 V, unless otherwise specified under conditions.

Typical values given at: T_{P1} = +25 °C, V_{in} = 54 V, max P_{out_TDP}, unless otherwise specified under conditions

For more detailed information please refer to Technical Reference Document: PMBus commands. This product is supported by the <u>Flex Power Designer tool.</u>


Command	Conditions	minimum	typical	maximum	unit
Monitoring accuracy					
Input voltage READ_VIN			±1		%
Output voltage READ_VOUT			±l		%
Output current READ_IOUT	V _{in} = 54 V, I _{out} = 90 A		±5		%
Temperature READ_TEMPERATURE_1	T≥25 °C		±1		°C

Note 1: Power Good is deasserted when the output voltage is disabled, regardless of the output voltage level.

Electrical graphs for BMR3231000/001

6.75 V, 90 A (175A peak) / 600 W (1200 W peak)

Efficiency

Efficiency vs. output power and input voltage at T_{Pl} = +25°

Output Ripple and Noise

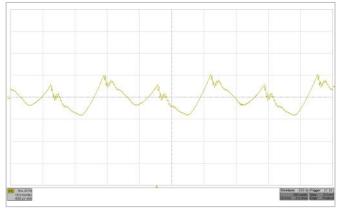


Figure 4: V_{in} = 54V , I_{out} = 90A, 20 MHz BW. Scale 10 mV/div, 500 ns/div

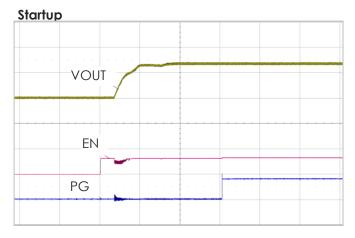
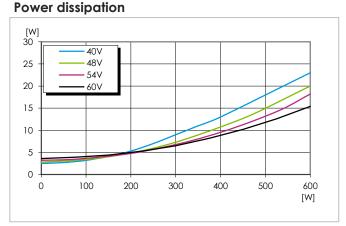



Figure 6: Output enabled by EN pin. $V_{in} = 54V$, $I_{out} = 0A$ Scale from top: 5, 5, 5 V/div, 5 ms/div.

Dissipated power vs. load power at $T_{P1} = +25^{\circ}C$

Output voltage droop

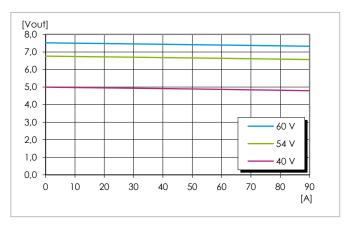


Figure 5: Output voltage vs output current

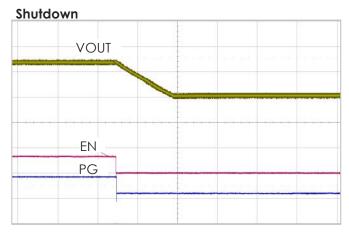


Figure 7: Output disabled by EN pin. $V_{in} = 54V$, $I_{out} = 1A$ Scale from top: 5, 5, 5 V/div, 5 ms/div.

Part 2: EMC EMC specifications

Conducted EMI measured according to EN55022 / EN55032, CISPR 22 / CISPR 32 and FCC part 15J (see test set-up below). The fundamental switching frequency is 600 kHz for BMR323. The EMI characteristics below is measured at V_{in} = 54V and max I_{out} .

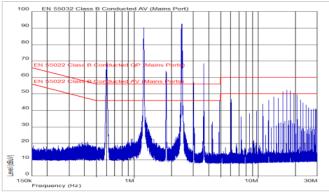


Figure 8: EMI without filter. (Blue graph = QP values)

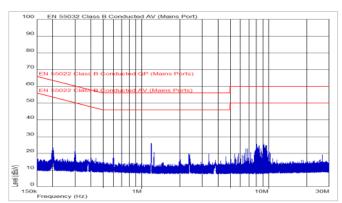
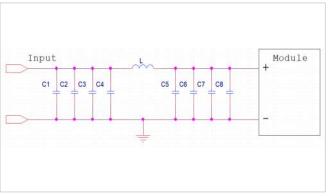
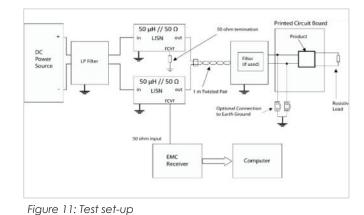
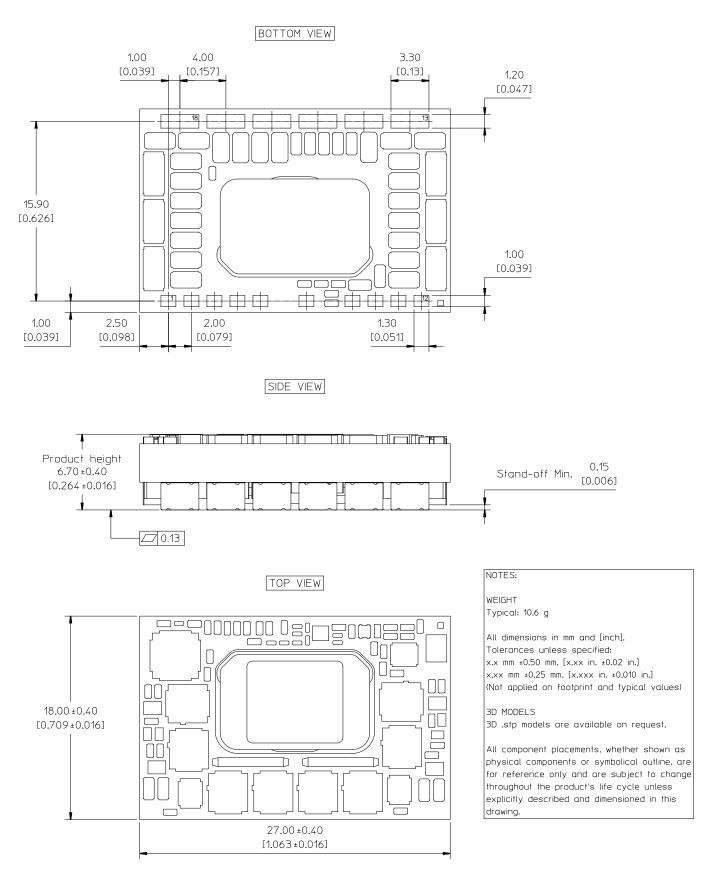



Figure 9: EMI with an optional external filter, EN55032. Test method and limits are the same as EN55022. (Blue graph = QP values)

Optional external filter for Class B

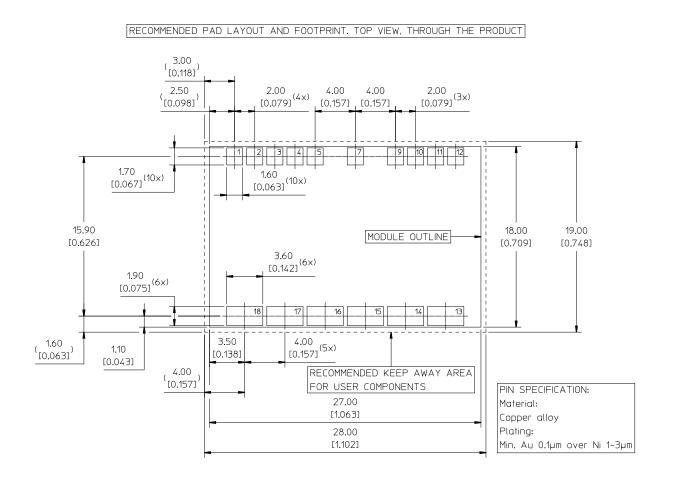
Suggested external input filter in order to meet Class B in EN 55022 / EN 55032, CISPR 22 / CISPR 32 and FCC part 15J.




Figure 10: Filter components:

C1-C3, C6-C8 2.2uF 10% 1206 100V X7R, capacitor C4-C5 10uF 100VDC X7R 10%, capacitor L1 2.2uH 20% 26A DC, Inductor

Layout recommendations

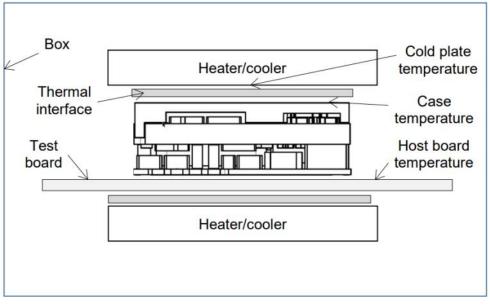

The radiated EMI performance of the product will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis. A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance.

Part 3: Mechanical information BMR323 1000/xxx: surface mounted

Part 3: Mechanical information

TOP VIEW - Pin-out description and pin positions

Pin	Designation	Туре	Function
1	NC		
2	SCL	Input/Output	PMBus clock
3	SDA	Input/Output	PMBus data
4	GND	Power	Power ground
5	ADDR	Input	PMBus address pin strap
6	Not mounted		
7	VIN	Power	Input voltage
8	Not mounted		
9	VCC	Power	Auxiliary supply
10	NC		
11	EN	Input	Enable, active high
12	PG	Open Drain	Power good, active high
13, 15, 17	VOUT	Power	Output voltage
14, 16, 18	GND	Power	Power ground


Part 4: Thermal considerations Thermal considerations

General

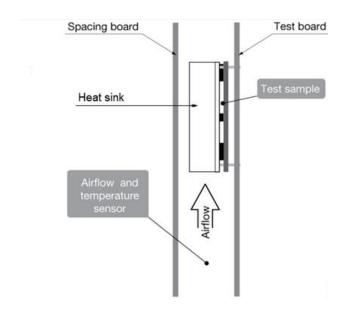
The product is designed with power switches on top to operate with top side cooling towards a heat sink or a cold plate. This is required to handle operation with high load. Cooling is also achieved by conduction to the host board and surrounding air. Sufficient cooling must be provided to ensure reliable operation. The Output Current Derating graph found in the Electrical Specification section provides the available output current versus case temperature and host board temperature.

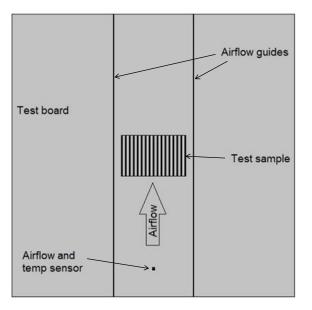
Test Setup – Cold Plate

The product is tested in a box with two heater/coolers; one as a cold plate to control the temperature at the top of the product, another on the bottom side of the test board to control the host board temperature. The test board used is 130 x 160 mm in size with 1.6 mm thickness and 6 layers of 3 oz.

Test set-up: Cold plate

Part 4: Thermal considerations

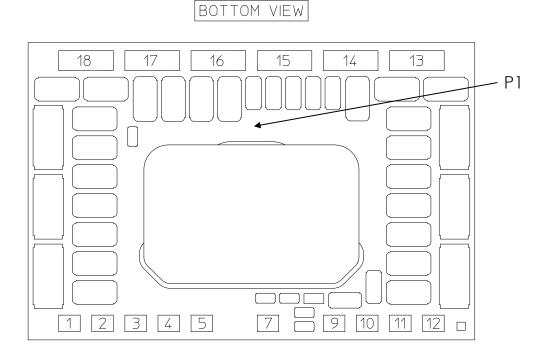

Test Setup – Heatsink


For products mounted on a PCB with a heatsink attached, cooling is achieved both by conduction, from the pins to the host board, and through the heatsink mounted on top of the device. The wind speed and temperature are measured in a point upstream to the device. The output current derating graphs found later in this section provide the available output current vs. ambient air temperature and air velocity at $V_{in} = 54 \text{ V}.$

For products using any form of heatsink structure a top spacing board and side airflow guides are used to ensure airflow hits the module and is not diverted away.

Distance between the tested device and the top space board and the side airflow guides are 6.35 mm \pm 1 mm.

The product is tested on a 185 x 185 mm, 105 μ m (3 oz), 6-layer test board mounted vertically in a wind tunnel.



Part 4: Thermal considerations

Definition of product operating temperature

Proper thermal conditions can be verified by measuring the temperature at position P1 as shown below. The temperature at this position (T_{P1}) should not exceed the maximum temperatures in the table below. The number of measurement points may vary with different thermal design and topology. Temperatures above maximum T_{P1} , measured at the reference point P1 are not allowed and may cause permanent damage.

Position	Description	Max. Temp.
P1	PCB Bottom	T _{P1} = 125 °C
	side	

Part 4: Thermal considerations

Thermal graphs

Output Power derating

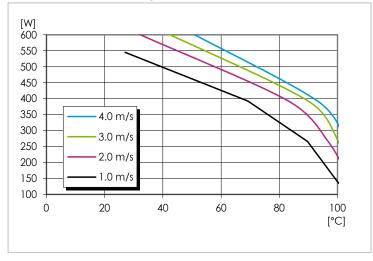
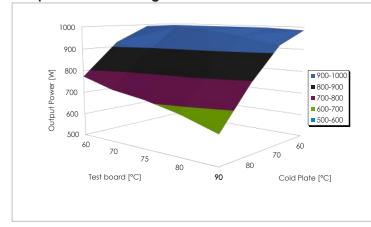



Figure 15: Max average output power vs. windspeed. Using ICK \$ 32 x 32 x 10 from Fischer.

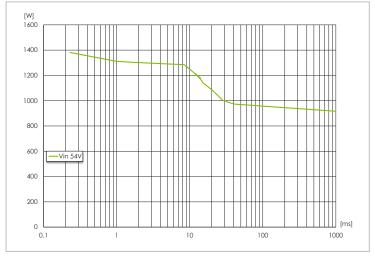
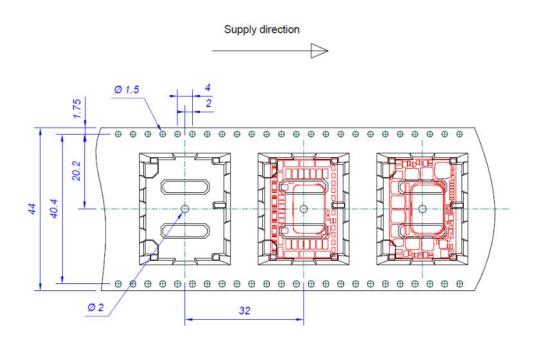
Output Power derating

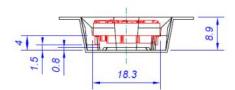
Figure 16: Max output power vs. cold plate temperature and host board temperature. Thermal interface material top 2.0 mm, 8 W/ Mk, bottom 1.0 mm, 8 W/mK.

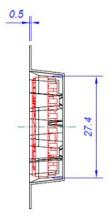
For more information, please refer to our <u>thermal models</u> on the website.

Peak Power

Peak power capability


Figure 16: Max peak output current vs pulse duration and PMBus monitored temperature when pulse starts. Initial I_{out} = 90 A. Limit given by max internal junction temperature (150 °C) of hotspot component.


Part 5: Packaging Packaging information

The products are delivered in antistatic carrier tape (EIA 481 standard).

Carrier Tape Specifications		
Material	Antistatic PS	
Surface resistance	10 ⁷ < ohm/square	
Bakabilty	Tape cannot be baked	
Tape width, W	44 mm [1.73 inch]	
Pocket pitch, P1	32 mm [1.26 inch]	
Pocket depth, K0	8.9 mm [0.35 inch]	
Reel diameter	330 mm [13 inch]	
Reel capacity	150 products/reel	
Reel weight	2.2kg/full reel	

Part 6: Revision history Revision table

Revision number	revision change	date	revisor
Rev. A	First release.	2025-04-XX	Karmjoh
Rev.B	Updated picture of product.	2025-04-22	Karjnils
Rev. C	Fixing typo.	2025-04-23	Karjnils
Rev. D	Adding order number example on page 2.	2025-04-24	Karjnils
Rev. E	Added Liquid cooling thermal graphs and the Liquid Cooling Setup, pages 12, 13, 15.	2025-04-29	Karjlind

Flex Power Modules, a business line of Flex, is a leading manufacturer and solution provider of scalable DC/DC converter primarily serving the data processing, communications, industrial and transportation markets. Offering a wide range of both isolated and non-isolated solutions, its digitally-enabled DC/DC converters include PMBus compatibility supported by the powerful <u>Flex Power Designer</u>.

