

BMR511

2-phase integrated power stage up to 140 A peak

The BMR511 is a two-phase integrated power stage with a continuous output current of 80A, and a peak current of 140 A.

It comes in a compact footprint of just $0.9 \text{ cm}^2 / 0.14 \text{ in}^2$ and is available with either LGA or solder bump termination.

The device is designed with the power stages located on bottom for the most effective down stream conducted cooling, and delivers excellent thermal results.

The BMR511 features protection mechanisms such as over-current protection and over-temperature protection. Two enable inputs are provided for each phase, and the module accepts tri-state PWM inputs.

Key features

- High efficiency:
 - 1.8V up to 94.5% at light load, 92.5% at full load.
 - 0.75V up to 92% at light load, 88% at full load.
- Can be paralleled with other units
- Remote control
- Reporting temperature and current for each phase
- Excellent thermal performance
- Halogen-free

Soldering methods

 Reflow soldering, LGA and solder bump options

Key electrical information

Parameter	Values
Input voltage range	5 - 15 V
Output voltage range	0.5 - 1.8 V
Max output current	80 A TDC/ 140 A peak

Mechanical

 $10 \times 9 \times 8 \text{ mm} / 0.39 \times 0.35 \times 0.31 \text{ in}$

Application areas

- Designed for AI applications
- Used by CPU, GPUs, IPUs, high-performance ASICSs

Product options

The table below describes the different product options.

	BMR511	1	04	4	/002	С	Definitions
Product family	BMR511						
Mounting options		1					0 = solder bump 1 = LGA
Product variants			04				04 = standard electrical variant
Mechanical configuration				4			4 = standard mechanical configuration
Configuration code					/002		/002 = 2 phases
Packaging options						С	C = Antistaic tape and reel packaging

For more information, please refer to <u>Part 2 Mechanical information</u>.

If you do not find the variant you are looking for, please contact us at <u>Flex Power Modules</u>.

Order number examples

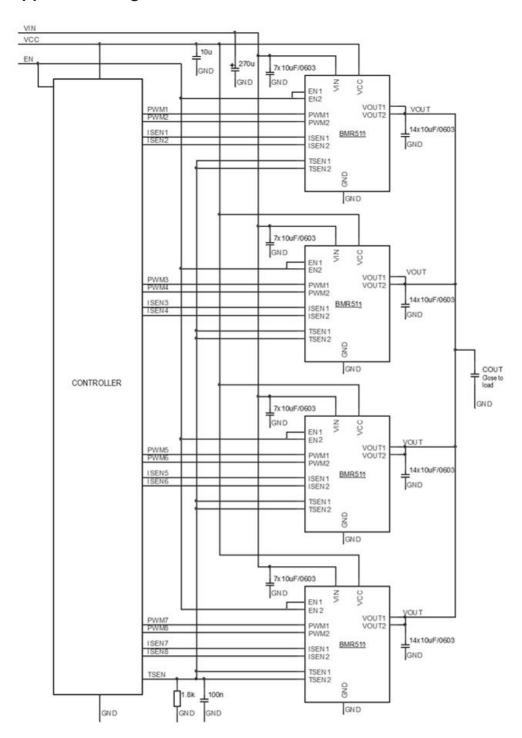
Part number	Vin	outputs	configuration
BMR5111034/001C	5-15 V	0.5-1.8 V	Standard 2 phase module, tape and reel packaging

Absolute maximum ratings

Stress in excess of our defined absolute maximum ratings may cause permanent damage to the converter. Absolute maximum ratings, also referred to as non-destructive limits, are normally tested with one parameter at a time exceeding the limits in the electrical specification.

Characteristics		min	typ	max	Unit
Operating temperature (TP1)		-40		125	°C
Storage temperature		-40		125	°C
Input voltage (V _{in})		-0.3		20	V
Signal I/O voltage	EN, PWM,ISEN, TSEN	-0.3		VCC+0.3	V
Driver and logic supply	VCC	-0.3	3.3	4	V

Reliability


Failure rate (λ) and mean time (50%) between failures (MTBF= 1/ λ) are calculated based on Telcordia SR-332 Issue 4: Method 1, Case 3, (80% of I_{out} , T_{P1} =40°C).

	Mean	90% confidence level	Unit
Steady-state failure rate (λ)	14	21	nfailures/h
Standard deviation (σ)	5.5		nfailures/h
MTBF	70.13	46.97	MHr

1/28701-BMR 511 Rev B 2023-06-16 3

Typical application diagram

Typical application circuit for 8 phase rail

Notes:

- 1. Value of output capacitance will depend on the application and load transient requirements.
- 2. TSEN filter values might be adjusted if connecting together TSEN of more than 16 phases.

Electrical specifications for BMR511 — Control and Monitoring

 T_{P1} = -40 °C to 125 °C, VI = 12 V, VCC = VEN = 3.3 V, unless otherwise specified under Conditions.

Typical values given at: T_{P1} = +25 °C, unless otherwise specified under Conditions.

Characte	eristics	Conditions	min	typ	max	Unit
10.40		Rising threshold		2.5	3.0	V
UVLO _{VIN}	VIN Under Voltage Lock-Out	Hysteresis		200		mV
10.4.0	VCC Under Voltage Lock-	Rising threshold		2.75	2.95	V
UVLO _{VCC}	Out	Hysteresis		200		mV
V _{IL_EN}	EN input low threshold				0.9	V
V _{IH_EN}	EN input high threshold		1.4			V
V _{IL_PWM}	PWM input low threshold				0.6	V
V _{IH_PWM}	PWM input high threshold		2.6			V
V _{TRI_PWM}	PWM tri-state region		1.1		2.1	V
V _{HiZ_PWM}	PWM high impedance voltage			1.6		V
		PWM = 0 V		500		μA
I _{PWM}	PWM sink/source current	PWM = 3.3 V		-500		μA
t _{PWM}	PWM minimum pulse width			15		ns
V _{O_TSEN}	TSEN voltage when fault		3.0	3.3		V
G _{TSEN}	TSEN gain			8		mV/°C
O _{TSEN}	TSEN offset	T _J = +25 °C		800		mV
T _{TSEN}	TSEN overtemperature shut- down and fault flag			160		°C
<u></u>	ICENI erein			5		μA/A
GISEN	ISEN gain	Accuracy	-2	0	2	%
Oisen	ISEN offset	$I_{O} = 0 \text{ A, V}_{ISEN} = 1.2 \text{ V}$ $T_{J} = +25 \text{ °C}$	-4	0	4	μА
V _{ISEN}	ISEN voltage range		0.7		2.1	V
I _{LIM H}	High-side current limit	Threshold, cycle-by- cycle		120		А
		Shutdown counter		10		Times
I _{LIM_L}	Low-side current limit	Threshold, cycle-by-cycle No fault report		-50		А
··· ···		Off time		200		ns

Electrical specifications for BMR511 – Power Conversion (1.8 V out)

 T_{P1} = -10 °C to 95 °C, V_{I} = 5 to 15 V, V_{CC} = 3.3 V, unless otherwise specified under Conditions.

Typical values given at: $T_{P1} = +25$ °C, $V_1 = 12V$, $V_0 = 1.8$ V, $I_0 = 80$ A, $f_{sw} = 800$ kHz, 2-phase single rail operation, otherwise specified under Conditions.

Measurements made on Reference board ROA 170 347.

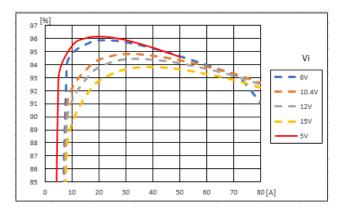
External C_{IN} = 1 x 270 μ F/22 m Ω OSCON + 28 x 10 μ F ceramic.

External C_{OUT} = 10 x 470 μ F/3 m Ω POSCAP + 356 x 10 μ F ceramic.

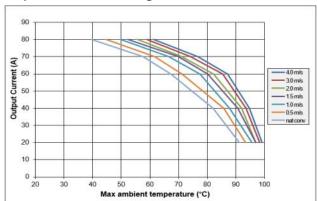
Char	acteristics	Conditions	min	typ	max	Unit
VI	Input supply	Continuous operation	5		15	V
V		Peak			16	V
Vcc	Driver and logic supply		3.0	3.3	3.6	V
V_{O}	Output voltage range		0.5		1.8	V
Voac	Output ripple & noise	20 MHz BW		3		mVp-p
fsw	Switching frequency	$T_{P1} = +25 ^{\circ}\text{C}$	500	800	1000	kHz
Сı	Internal input capacitance	$V_1 = 0 V$		8.8		μF
Co	Internal output capacitance	$V_O = 0 V$		0		μF
Lo	Output inductance	I _O = 0 A		120		nH
	Output current, peak	2-phase operation			140	Α
	Colpor Colletti, peak	1-phase operation			70	Α
lo	Output compant continuous Nata 1	2-phase operation	0	80		Α
	Output current, continuous, Note 1	1-phase operation	0	40		А
I_{IN}	VIN input current	Standby, EN = low		10		μΑ
		1-phase operation		20		
		I _O = 40 A		38		mA
		2-phase operation				
I _{VCC}	VCC input current	I _O = 80 A		71		mA
		Standby,				
		PWM1 = PWM2 = low		3		mA

Note 1: The maximum continuous output current will also be limited by the thermal conditions.

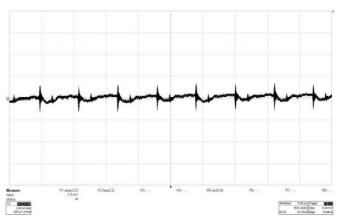
See derating graphs and section Thermal Considerations.


Vin =5~6V, Vo=1.8V, Io typ=50A

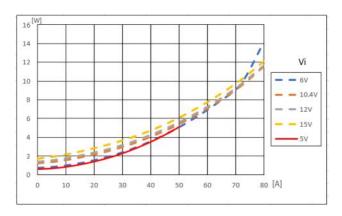
Electrical graphs for BMR511


$V_{out} = 1.8 V$

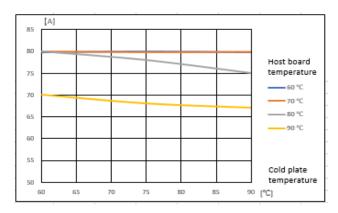
Efficiency


Driver losses excluded, 2 phases, fsw=800 kHz

Output Current Derating-wind tunnel


Available load current vs. ambient air temperature and air flow at V_{I} = 12V.

Output ripple


 V_I = 12 V, I_O = 80 A, Scale: 2 mV/div, 0.5 $\mu s/div$, 20 MHz BW. C_{OUT} = 10 x 470 $\mu F/3$ mQ POSCAP + 365 x 10 μF ceramic.

Power dissipation

Driver losses excluded, 2 phases, fsw= 800 kHz

Output Current Derating-cold wall

Thermal interface gap pad 1 mm, 8 W/mK. V_i = 12V.

Electrical specifications for BMR511 – Power Conversion (0.75 V out)

 T_{P1} = -10 °C to 95 °C, V_{I} = 5 to 15 V, V_{CC} = 3.3 V, unless otherwise specified under Conditions.

Typical values given at: $T_{P1} = +25$ °C, $V_1 = 12V$, $V_0 = 0.75V$, $I_0 = 80$ A, $f_{sw} = 450$ kHz, 2-phase single rail operation, otherwise specified under Conditions.

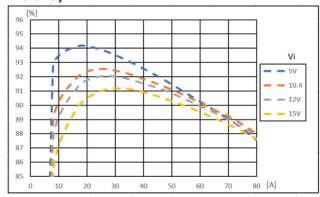
Measurements made on Reference board ROA 170 347.

External C_{IN} = 1 x 270 μ F/22 m Ω OSCON + 28 x 10 μ F ceramic.

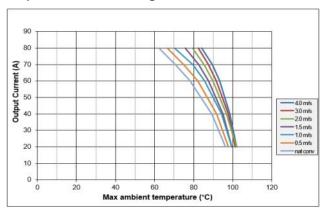
External C_{OUT} = 10 x 470 μ F/3 m Ω POSCAP + 356 x 10 μ F ceramic.

Char	acteristics	Conditions	min	typ	max	Unit
Vı	Input supply	Continuous operation	5		15	٧
٧١	Прогзорріу	Peak			16	V
Vcc	Driver and logic supply		3.0	3.3	3.6	V
Vo	Output voltage range		0.5	0.75	1.8	V
Voac	Output ripple & noise	20 MHz BW		3		mVp-p
fsw	Switching frequency	T _{P1} = +25 °C	400	450	1000	kHz
Сı	Internal input capacitance	V _I = 0 V		8.8		μF
Со	Internal output capacitance	V _O = 0 V		0		μF
Lo	Output inductance	I _O = 0 A		120		nH
	Output current, peak	2-phase operation			140	А
	Colpor Colletti, peak	1-phase operation			70	Α
lo	Outrout oursent continuous Note 2	2-phase operation	0	80		А
	Output current, continuous, Note 2	1-phase operation	0	40		А
I _{IN}	VIN input current	Standby, EN = low		10		μΑ
		1-phase operation		20		A
		I _O = 40 A		38		mA
		2-phase operation				
Ivcc	VCC input current	I _O = 80 A		71		mA
		Standby,				
				3		mA
		PWM1 = PWM2 = low				

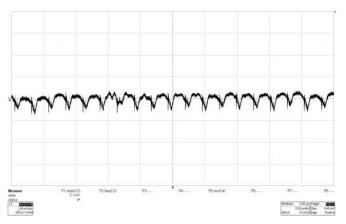
Note 2: The maximum continuous output current will also be limited by the thermal conditions.


See derating graphs and section Thermal Considerations.

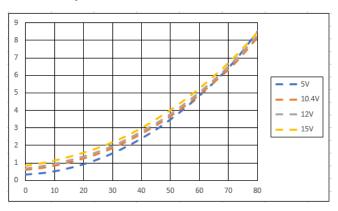
Electrical graphs for BMR511


$V_{out} = 0.75 V$

Efficiency


Driver losses excluded, 2 phases, fsw=450 kHz

Output Current Derating-wind tunnel


Available load current vs. ambient air temperature and air flow at $V_{I=12V}$

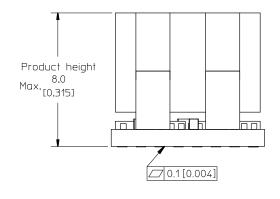
Output ripple

 V_I = 12 V, I_O = 80 A, Scale: 2 mV/div, 2 $\mu s/div$, 20 MHz BW. C_{OUT} = 10 x 470 $\mu F/3$ mQ POSCAP + 365 x 10 μF ceramic.

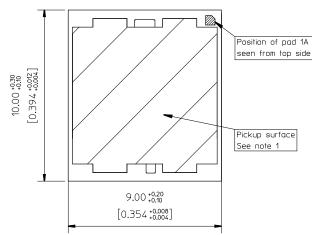
Power dissipation

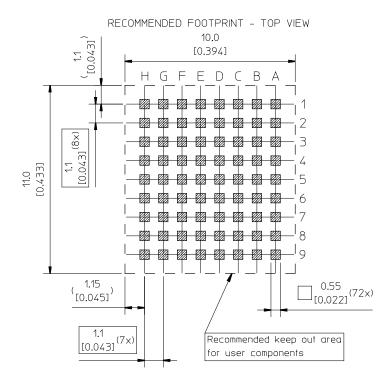
Driver losses excluded, 2 phases, fsw= 450 kHz

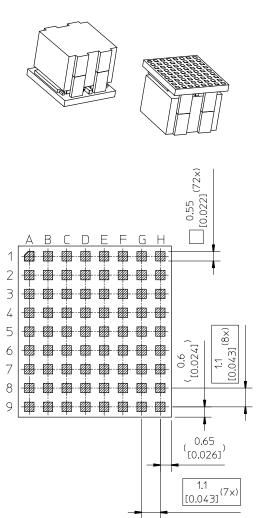
Output Current Derating-cold wall



Thermal interface gap pad 1 mm, 8 W/mK. V_i = 12V.



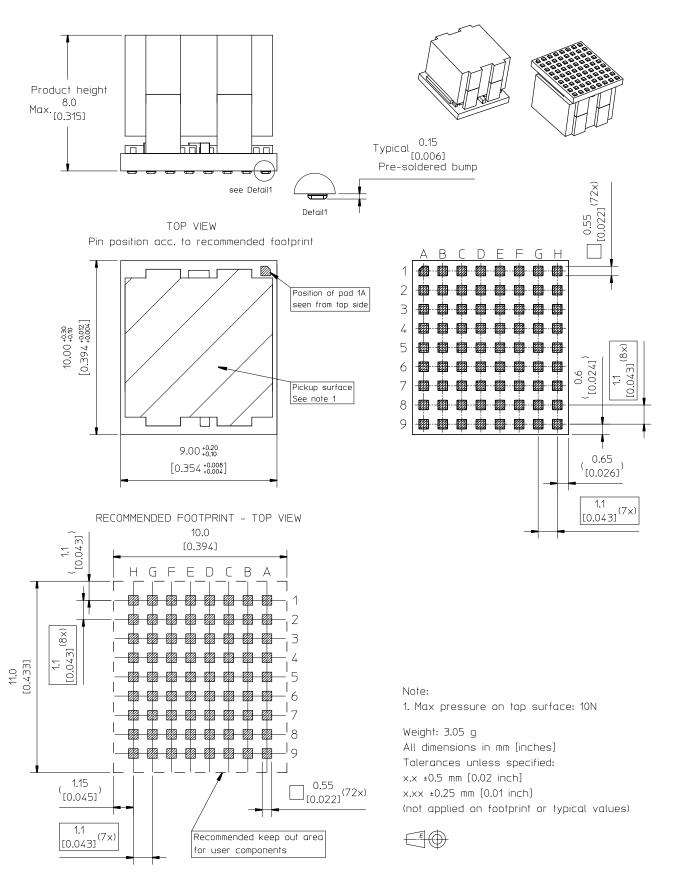

Part 2: Mechanical information


BMR511: Surface Mount Version

 $\begin{tabular}{ll} TOP \ VIEW \\ Pin \ position \ acc. \ to \ recommended \ footprint \\ \end{tabular}$

Note:

1. Max pressure on top surface: 10N


Weight: 3.05 g
All dimensions in mm [inches]
Tolerances unless specified:
x.x ±0.5 mm [0.02 inch]
x.xx ±0.25 mm [0.01 inch]
(not applied on footprint or typical values)

Part 2: Mechanical information

BMR511: Surface Mount Version with solder bumps

Connections

Part 2: Mechanical information

Н	G	F	Ε	D	\subset	В	А	
PWM1	EN1	TSEN1	ISEN1	PWM2	EN2	TSEN2	ISEN2	1
VCC5							VCC33	2
								3
								4
				ND				5
								6
	VOI							7
		JT1			VO	UT2		8
								9

Pin layout, top view

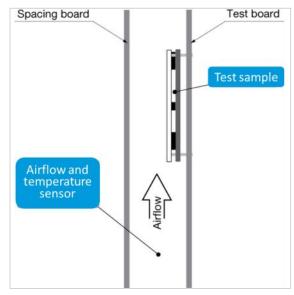
Pin	Designation	Туре	Function
A1	ISEN2	Output	Current sense output, phase 2. Use external resistor to adjust the voltage proportional to the inductor current
A2	VCC33	input	Driver and internal circuitry supply. Connect to +3.3 V.
B1	TSEN2	Output	Temperature sense and fault reporting, phase 2.
C1	EN2	Input	Active high enable input, phase 2
DI	PWM2	Input	Pulse-width modulation input, phase 2. The PWM2 signal shall be 180° phase shifted compared to the PWM1 signal
E1	ISEN1	Output	Current sense output, phase 1. Use external resistor to adjust the voltage proportional to the inductor current
F1	TSEN1	Output	Temperature sense and fault reporting, phase 1.
G1	EN1	Input	Active high enable input, phase 1.
Н1	PWM1	Input	Pulse-width modulation input, phase 1. The PWM1 signal shall be 180° phase shifted compared to the PWM2 signal .
H2	VCC5	NC	No connection.
B2-G2, A3-H3	VIN	Power	Input voltage .
A4-H4, A5-H5, A6-H6	GND	Power	Power ground and digital ground.
A7-D7, A8- D8, A9-D9	VOUT2	Power	Output voltage, phase 2
E7-H7, E8-H8, E9-H9	VOUT1	Power	Output voltage, phase 1

Part 3: Thermal considerations

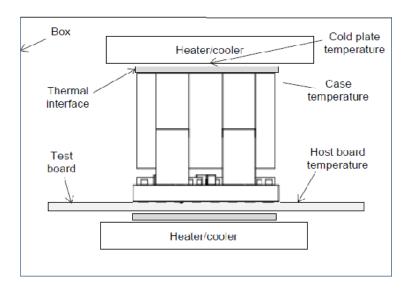
Thermal Consideration

General

The product is designed with inductor on top. Cooling is mainly achieved by conduction to the host board and convection which is dependent on the airflow across the product. Increased airflow enhances the cooling of the product.


The Output Current Derating graph found in the Electrical Specification section provides the available output current versus Max. ambient temperature, and output current versus cold plate temperature and host board temperature.

Test Setup - Wind tunnel

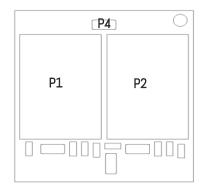

The product is tested on a 254 x 254 mm, 35 μ m (1 oz), 8 layer test board mounted vertically in a wind tunnel with a cross section of 608 x 203 mm. Distances between the tested device and the top space board are 12 mm.

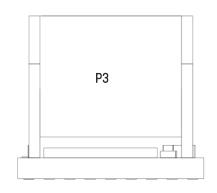
Test Setup - Cold Plate

The product is tested in a box with two heater/coolers; one as a cold plate to control the temperature at the top of the module, another on the bottom side of the test board to control the host board temperature. The test board used is 254 x 254 mm in size with 1.6 mm thickness and 8 layers of 1 oz.

Picture: test setup — Cold plate

Definition of Product Operating Temperature


The temperature at positions P1-P4 should not exceed the maximum temperatures in the table below. The number of measurement points may vary with different thermal design and topology. Temperature above specified maximum measured at the specified position is not allowed and may cause permanent damage.

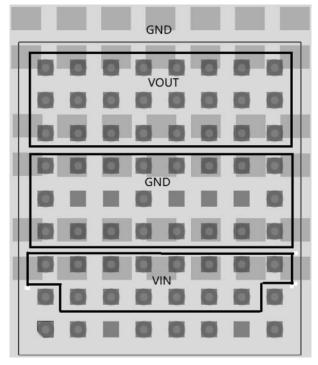

1/28701-BMR 511 Rev B 2023-06-16 13

Part 3: Thermal considerations

Position	Description	Max temperature
P1	Power switch case phase 1 reference point	T _{P1} =125°C
P2	Power switch case phase 2	T _{P2} =125°C
Р3	M1, Inductor core	T _{P3} =125°C
P4	capacitors	T _{P4} =105°C

Top view (inductor removed)

Side view



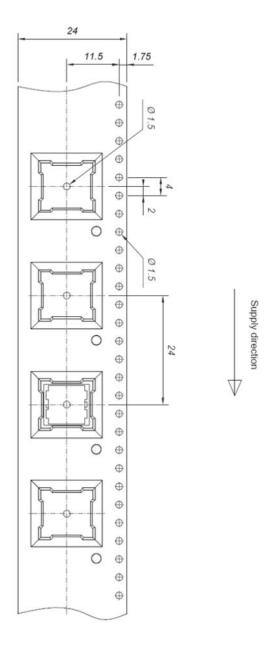
Part 4: PCB layout considerations

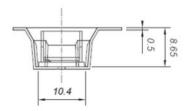
PCB Layout Consideration

- 1. The radiated EMI performance of the product will depend on the PCB layout and ground layer design. A ground plane shall be used, to increase the stray capacitance in the PCB and improve the high frequency EMC performance. The ground plane shall connect to the GND pins of the devices and the equipment ground or chassis.
- 2. For a multiphase rail including several power modules, layout should be as symmetrical as possible in order to help balance the current between devices.
- 3. If possible, use planes on several layers to carry VI, VO and ground. There should be a large number of vias close to the VIN, VOUT and GND pins to lower input and output impedances and improve heat spreading between the product and the host board.
- 4. Care should be taken in the routing of the ISEN and TSEN connections. The routing should be along a GND plane and should avoid areas of switching signals or high electric or magnetic fields, e.g. keep away from PWM signals.
- 5. The external input capacitors, CI_EXT, shall be placed as close to the input pins as possible and with low impedance connections, e.g. using via stitching around capacitors' terminals. See AN323 for more details.
- 6. The external output capacitors, CO_EXT, should be placed close to the output pins to handle the output current ripple, and close to the load to handle the load transients. See AN321 for more details. Low impedance connections must be used, e.g. via stitching around capacitors' terminals.

Below picture shows a layout example where the module is mounted on the top side of the PCB and 7 pcs 0603 input capacitors and 14 pcs 0603 output capacitors are placed on the bottom side of the PCB, providing a short connection to the VIN, VOUT and GND pins through vias in module pads.

Layout example: Input and output capacitance placement close to the module (top view).


1/28701-BMR 511 Rev B 2023-06-16 15



Part 5: Packaging

Packaging information

C option:	
Material	Antistatic polyphenylene ester (PPE)
Surface resistance	10 ⁵ < ohm/square < 10 ¹¹
Bakeabilty	The tape is not bakeable
Tape width, W	24 mm [0.95 inch]
Pocket pitch, P ₁	24 mm [0.95 inch]
Pocket depth, K ₀	8.65 mm [0.34 inch]
Reel diameter	330 mm [13.0 inch]
Reel capacity	300 products /reel
Reel weight	1400 g/full reel

Part 6: Revision history

Revision table

Revision number	revision change	date	revisor
Rev. A	New document	2023/6/15	JIDDIYAN
Rev. B	Spell check	2023/6/15	KARTWAER

© Flex Power Modules 2023

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.