DC/DC converter Input 9-36 and 18-72 Vdc Output up to 0.5 A / 3 W

Key Features

- Industry standard DIL24
- Wide input voltage range, 9–36 V, 18–72 V
- High efficiency 74–83% typical
- · Low idling power
- Full output power up to +75 °C

ambient temperature

- Input/Output isolation 1,500 Vdc
- MTBF > 650,000 hours at +25°C ambient
- Functional insulation according to UL 62368-1

Safety Approvals

The PKV series of DC/DC power modules is intended for general use in 12/24 V and 48/60V DC systems. Designed with MOSFET transistors and 200 kHz switching frequency, they are characterized by high efficiency over a wide load range, very low quiescent power and an excel- lent line and load regulation.

The DC/DC power modules are encapsulated in an epoxy filled plastic box. The flammability ratings of the

Design for Environment

Meets requirements in high-temperature lead-free soldering processes.

encapsulating materials are in conformance with UL 94V-0 and have an adequate thermal conductivity. The materials withstand all normal PBA cleaning methods. Flex is an ISO 9001/14001 certified supplier.

General

Absolute Maximum Ratings

Chara	cteristics	min	max	Units	
Tc	Case temperature ¹⁾	-40	+95	°C	
Ts	Storage temperature		-40	+125	°C
VI	Input voltage, 0.1 s max PKV 3000 PKV 5000			40 80	Vdc
V _{ISO}	Isolation voltage ²⁾ (input to output test voltage)		1,5	00	Vdc

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Note:

- 1) Corresponding typical ambient temperature range (T_A) at full output power is -40 to $+75^{\circ}$ C.
- 2) Typical Isolation voltage of PKV5211 module is 2,000 Vdc

Input $T_A = +25^{\circ}C$, unless otherwise specified

Chara	acteristics	Conditions		min	typ	max	Units
Vı	Input voltage range	T _A = – 40 to +75°C	PKV 3000 PKV 5000	9 18		36 72	V
V _{loff}	Turn-off input voltage		PKV 3000 PKV 5000			8 16	V
	Inrush current Peak I ² t	Low loss, low inductive capacitive source	PKV 3000 PKV 5000		35 0.005 0.005		A A²s A²s
	Idling power	I _O = 0			0.3		W
V _{lac}	Ripple voltage	I _O = I _{Omax} , BW=20 N	1Hz		100		mV _{p-p}

Miscellaneous

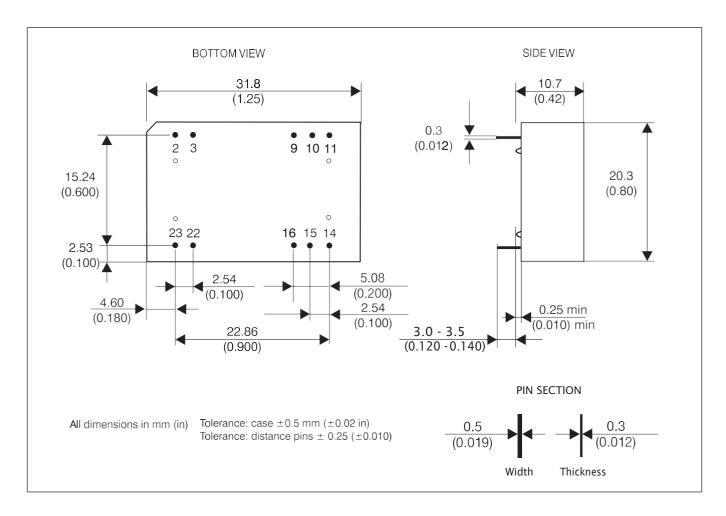
Chara	aracteristics Conditions		min	typ	max	Unit
	Input/Output couplingcapacitor	RH = 48%, T _C = +25°C f = 100 Hz		1000		pF
	Switching frequency	$V_I = V_{Inom}, I_O = I_{Omax}$		200		kHz

Environmental Characteristics

Test method	Reference	Test procedure & conditons		
Vibration (Sinusoidial)	IEC 68-2-6 F _c	Frequency Amplitude Accelaration Number of cycles Test duration	10500Hz 0.75 mm 10 g 10 in each axis 1 h per axis	
Shock (Half-sinus)	alf-sinus)		200g 3 ms	
Temperature change			– 40°C to +125°C 100	

Safety

The PKV 3000 I and PKV 5000 I series DC/DC converters are designed in accordance with safety standards UL 62368-1, Safety of Information Technology Equipment. The PKV 3000 I and PKV 5000 I series DC/ DC converters are UL 62368-1 recognized. The DC/DC converter should be installed in the end-use equipment, in accordance with the requirements of the ultimate application. The input source must be isolated by minimum Basic insulation from the primary circuit in accordance with UL 62368-1. If the input voltage to the DC/DC converter is 72 V dc or less, then the output remains SELV (Safety Extra Low Voltage) under normal and abnormal operating conditions.


It is recommended that a slow blow fuse with a rating of 2 x I_Imax be used at the input of each DC/DC converter. If a fault occurs in the converter that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the faulty DC/DC converter from the input power source not to affect the operation of other parts of the system.
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating.

The galvanic isolation is verified in an electric strength test. The test voltage (V_{ISO}) between input and output is 1500 Vdc for 60 seconds. Leakage current is less than 1µA at nominal input voltage.

The flammability rating for all construction parts of the DC/DC converter meets UL 94V-0.

Mechanical Data

Connections

Pin	Designation	Funct	ion
FIII	Designation	Single output	Dual output
2	– In	Negative input	Negative input
3	–In	Negative input	Negative input
9	NC/Rtn	Not connected	Output return
10	NC	Not connected	Not connected
11	NC/-Out	Not connected	Negative output
14	+Out	Positive output	Positive output
15	NC	Not connected	Not connected
16	Rtn	Output return	Output return
22	+In	Positive input	Positive input
23	+In	Positive input	Positive input

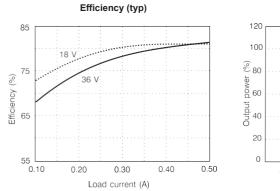
Weight:

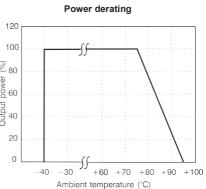
Pins:

Maximum 15 g (0.53 oz). Material: Copper

Plating: 3 µm Tin over 1.5 µm Ni

Case: Non-conductive plastic, UL 94V-0.


PKV 3211 PI

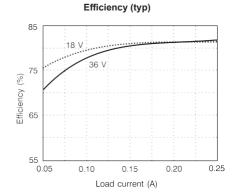

Output

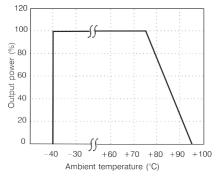
Characteristics		Conditions			Output 1		Unit
Charact	eristics	Conditions	Conditions		typ	max	Onit
Vo	Output voltage tolerance band	$I_0=0.11.0 \times I_{Omax}$ and long term drift				5.10	V
	Line regulation	I _O =I _{Omax}			10	25	mV
	Load regulation	I_{O} =0.11.0 × I_{O} max,	V ₁ = 26 V		10	50	mV
t _{tr}	Load transient recovery time				300		μs
V _{tr}		I _O = 0.11.0 × I _O max, load step = 0.5 × I _O max			+100		mV
v tr	Load transient voltage			-100		mV	
T _{coeff}	Temperature coefficient	Measured after stabiliz	zation			±0.02	%/°C
tr	Ramp-up time	I _O =	$0.1 \dots 0.9 \times V_O$		0.5		ms
ts	Start-up time	$0.11.0 \times I_0 max, V_1 = 26 V$	From V _I connection to V _O = $0.9 \times V_{Oi}$		800	1300	ms
lo	Output current					0.5	А
P _O max	Max output power			2.5			W
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max		0.5		1.62	А
I _{sc}	Short circuit current	Vi =26 V			0.25		А
V _O ac	Output ripple & noise	I _O =I _O max,T _A = 25 °C	DC 20 MHz		60		mV _{p-p}
SVR	Supply voltage rejection (ac)		f = 100/120 Hz sine wave, 1 V _{P-P} , (SVR = 20 log (1 V _{P-P} /V _{OP-P}))		60		dB

 $T_A = +25^{\circ}C$, $V_I = 9...36$ V unless otherwise specified.

 $^{1)}\,At\;V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _{Omax} , V _I = 26 V	76	82		%
Pd	Power dissipation	I _O =I _O max, V _I = 26 V		0.55	0.79	W


PKV 3313 PI


Output

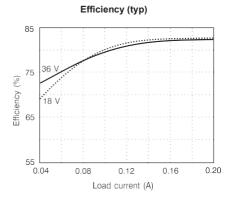
Characteristics		Conditions			Output 1		Unit
Characte	eristics	Conditions		min	typ	max	Unit
Vo	Output voltage tolerance band	I_0 =0.11.0 × I_{Omax} and long term drift				12.24	V
	Line regulation	I _O =I _{Omax}			24	60	mV
	Load regulation	I _O =0.11.0 × I _O max,	VI = 26 V		24	120	mV
t _{tr}	Load transient recovery time				300		μs
Vtr	Load transient voltage	lo= 0.11.0 × lo max, load step = 0.5 × lo ma			+150		mV
Vtr	Load transient voltage				-150		mV
T _{coeff}	Temperature coefficient	Measured after stabili	zation			± 0.02	%/°C
tr	Ramp-up time	lo=	$0.1 \dots 0.9 \times V_0$		1.2		ms
ts	Start-up time	$0.11.0 \times I_0 max, V_1 = 26 V$	From V _I connection to V _O = $0.9 \times V_{Oi}$		800	1300	ms
lo	Output current					0.25	А
P _O max	Max output power			3			W
l _{lim}	Current limiting threshold ¹⁾	Tc < T _C max		0.25		0.81	А
Isc	Short circuit current	VI =26 V			0.35		А
V _{O ac}	Output ripple & noise	I _O =I _O max,T _A = 25 °C	DC 20 MHz		60		mV _{p-p}
SVR	Supply voltage rejection (ac)		f = 100/120 Hz sine wave, 1 V _{P-P} , (SVR = 20 log (1 V _{P-P} /V _{OP-P}))		60		dB

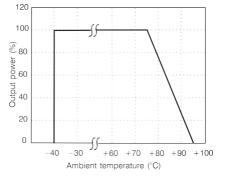
 $^{1)}$ At $V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Miscellaneous

Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	$I_0 = I_{Omax}, V_I = 26 V$	76	82		%
Pd	Power dissipation	$I_0 = I_0 \max$, $V_1 = 26 V$		0.66	0.95	W

PKV 3315 PI


Output

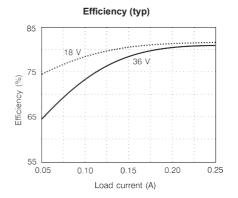

Charact	oriotion	Conditions			Output 1		Unit
Charact	enstics	Conditions	Conditions		typ	max	Unit
Vo	Output voltage tolerance band	$I_0=0.11.0 \times I_{0max}$ and long term drift				15.3	V
	Line regulation	I _O =I _{Omax}			30	75	mV
	Load regulation	Io =0.1 1.0 × Io max, V	VI = 26 V		30	150	mV
t _{tr}	Load transient recovery time				300		μs
V	Lood transient veltage	Io= 0.1 1.0 × Io max, Ioad step = 0.5 × Io max			+200		mV
V _{tr}	Load transient voltage				-200		mV
T _{coeff}	Temperature coefficient	Measured after stabiliz	ation			±0.02	%/°C
tr	Ramp-up time	lo=	$0.1 \dots 0.9 \times V_O$		1.2		ms
ts	Start-up time	0.11.0 × I _O max, V _I = 26 V	From V _I connection to V ₀ = $0.9 \times V_{0i}$		800	1300	ms
lo	Output current		•			0.2	А
P _O max	Max output power			3			W
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max		0.2		0.65	А
Isc	Short circuit current	Vi =26 V			0.35		А
V _O ac	Output ripple & noise	I _O =I _{O max} , T _A = 25 °C	Io =Io max, TA = 25 °C DC 20 MHz		60		mV _{p-p}
SVR	Supply voltage rejection (ac)		f = 100/120 Hz sine wave, 1 V _{P-P} , (SVR = 20 log (1 V _{P-P} /V _{OP-P}))		60		dB

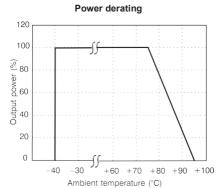
 T_A = +25°C, V_I = 9...36 V unless otherwise specified.

 $^{1)}$ At $V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Miscellaneous

	Characteristics		Conditions	min	typ	max	Unit
	η	Efficiency	$I_O = I_{Omax}, V_I = 26 V$	76	82		%
ſ	Pd	Power dissipation	I _O =I _O max, V _I = 26 V		0.66	0.95	W


PKV 3222 PI


Output

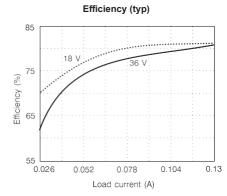
Characte	viation	Conditions			Output 1			Output 2		Unit	
Gliaracte	instics	Conditions		min	typ	max	min	typ	max	Unit	
Vo	Output voltage tolerance band	I_0 =0.11.0 × I_0 max and long term drift				+5.1	-4.9		-5.1	V	
	Line regulation	I _O =I _{Omax}			10	25		10	25	mV	
	Load regulation	I _O =0.11.0 × I _O max, V _I = 26 V			10	50		10	50	mV	
t _{tr}	Load transient recovery time		0.1 1.0 × I _O max, V _I = 26 V		300			300		μs	
Vtr	Load transient voltage	I_0 = 0.1 1.0 × I_0 max, V load step = 0.5 × I_0 max	7 ₁ = 26 V		+100			+100		mV	
v tr	Load transient voltage				-100			-100		mV	
T _{coeff}	Temperature coefficient	Measured after stabiliz	Measured after stabilization			±0.02			±0.02	%/°C	
tr	Ramp-up time	Io=	$0.1\0.9\times V_{0}$		1.2			1.2		ms	
ts	Start-up time	0.11.0 × I _O max, V _I = 26 V	From V _i connection to V _O = $0.9 \times V_{Oi}$		800	1300		800	1300	ms	
lo	Output current					0.25			0.25	А	
P _O max	Max output power			1.25			1.25			W	
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max	T _C < T _C max			0.81	0.25		0.81	А	
Isc	Short circuit current	V1 =26 V	VI =26 V		0.25			0.25		А	
V _O ac	Output ripple & noise	I _O =I _O max, T _A = 25 °C	DC20 MHz		60			60		mV _{p-p}	
SVR	Supply voltage rejection (ac)	f = 100/120 Hz sine wa (SVR = 20 log (1 V _{p-p} /V			45			45		dB	

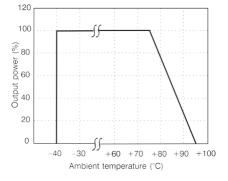
 $T_A = +25^{\circ}C$, $V_I = 9...36V$ unless otherwise specified.

 $^{1)}$ At $V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Characte	eristics	Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _{Omax} , V _I = 26 V	75	82		%
Pd	Power dissipation	I _O = I _O max, V _I = 26 V		0.55	0.83	W

PKV 3321 PI

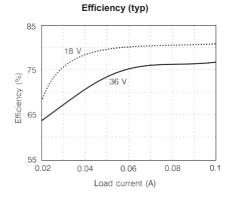

Output

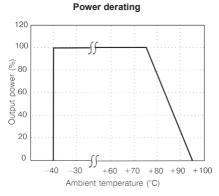

Characte		Conditions			Output 1			Output 2		Unit
Characte	ensucs	Conditions		min	typ	max	min	typ	max	Unit
Vo	Output voltage tolerance band	$I_0=0.11.0 \times I_{0max}$ and long term drift		+11.76		+12.24	-11.76		-12.24	V
	Line regulation	I _O =I _{Omax}	o =lomax		24	60		24	60	mV
	Load regulation	Io =0.11.0 × Io max, V	=0.11.0 × I _O max, V _I = 26 V		24	120		24	120	mV
t _{tr}	Load transient recovery time				300			300		μs
V		lo= 0.11.0 × lo max, V load step = 0.5 × lo max			+150			+150		mV
V _{tr}	Load transient voltage				-150			-150		mV
T _{coeff}	Temperature coefficient	Measured after stabiliz	Measured after stabilization			±0.02			±0.02	%/°C
tr	Ramp-up time	I _O =	$0.1\0.9\times V_{0}$		1.2			1.2		ms
ts	Start-up time	$0.11.0 \times I_0 max, V_1 = 26 V$	From V ₁ connection to V ₀ = $0.9 \times V_{0i}$		800	1300		800	1300	ms
lo	Output current		-			0.125			0.125	А
P _O max	Max output power			1.5			1.5			W
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max	T _C < T _C max			0.400	0.125		0.400	А
I _{sc}	Short circuit current	V1 =26 V	VI =26 V		0.35			0.35		А
V _O ac	Output ripple & noise	Io =Io max, T _A = 25 °C	DC20 MHz		60			60		mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100/120 Hz sine wa (SVR = 20 log (1 V _{p-p} /V			45			45		dB

 T_A = +25°C, V_I = 9...36V unless otherwise specified.

 $^{1)}\,At~V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Miscellaneous


Characte	eristics	Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _{Omax} , V _I = 26 V	73	82		%
Pd	Power dissipation	$I_0 = I_0 max$, $V_1 = 26 V$		0.66	1.11	W


PKV 3325 PI

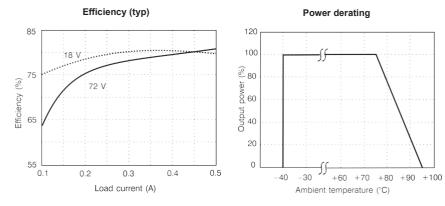
Output

0					Output 1 Outp		Output 2	2 Unit		
Charact	eristics	Conditions		min	typ	max	max min typ max		max	Onic
Vo	Output voltage tolerance band	$I_0=0.11.0 \times I_{Omax}$ and long term drift		+14.7		+15.3	-14.7		-15.3	V
	Line regulation	I _O =I _{Omax}			30	75		30	75	mV
	Load regulation	Io =0.1 1.0 × Io max,	Io =0.11.0 × Io max, VI = 26 V		30	150		30	150	mV
t _{tr}	Load transient recovery time		0.1 1.0 × Io max, Vi = 26 V d step = 0.5 × Io max		300			300		μs
M	Lood transient voltage	load step = 0.5 × lo max, '			+200			+200		mV
V _{tr}	Load transient voltage				-200			-200		mV
T _{coeff}	Temperature coefficient	Measured after stabiliz	Measured after stabilization			±0.02			±0.02	%/°C
tr	Ramp-up time	I _O =	$0.1 \dots 0.9 \times V_O$		1.2			1.2		ms
ts	Start-up time	$0.11.0 \times I_0 max, V_1 = 26 V$	From V _I connection to V _O = $0.9 \times V_{Oi}$		800	1300		800	1300	ms
lo	Output current					0.1			0.1	А
P _O max	Max output power			1.5			1.5			W
l _{lim}	Current limiting threshold ¹⁾	Tc < Tc max	Tc < Tc max			0.32	0.10		0.32	А
I _{sc}	Short circuit current	V1 =26 V	V ₁ =26 V		0.35			0.35		А
$V_{\rm O}$ ac	Output ripple & noise	Io =Io max, T _A = 25 °C	DC20 MHz		50			50		mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100/120 Hz sine wa (SVR = 20 log (1 V _{P-P} /			45			45		dB

 $^{1)}$ At $V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Characte	ristics	Conditions	min	typ	max	Unit
η	Efficiency	$I_{O} = I_{Omax}, V_{I} = 26 V$	76	80		%
Pd	Power dissipation	$I_0 = I_0 max$, $V_1 = 26 V$		0.75	0.95	W

PKV 5211 PI


Output

T_A = +25°C, V _I = 1872V unless otherwise specified. Maximum Recommended Capacitive Load = 660µF.
--

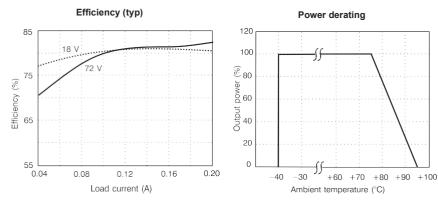
Charact		Conditions			Output 1	Unit		
Charact	enstics	Conditions	-	min	typ	max	Unit	
Vo	Output voltage tolerance band	I_0 =0.11.0 × I_{Omax} and long term drift		4.90		5.10	V	
	Line regulation	I _O =I _{Omax}			10	25	mV	
	Load regulation	I _O =0.11.0 × I _O max,	VI = 53 V		10	50	mV	
t _{tr}	Load transient recovery time				300		μs	
<i>\</i> /	Load transient voltage	Io= 0.11.0 × Io max, load step = 0.5 × Io ma			+100		mV	
V _{tr}	Load transient voltage		-		-100		mV	
T _{coeff}	Temperature coefficient	Measured after stabili	Measured after stabilization			±0.02	%/°C	
tr	Ramp-up time	I _O =	$0.1 \dots 0.9 \times V_0$		0.5		ms	
ts	Start-up time	$0.11.0 \times I_0 max, V_1 = 53 V$	From V _I connection to V _O = $0.9 \times V_{Oi}$		900	1300	ms	
lo	Output current					0.5	А	
P _O max	Max output power			2.5			W	
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max	T _C < T _C max			1.62	А	
I _{sc}	Short circuit current	V1 =53 V			0.12		А	
V _O ac	Output ripple & noise	I _O =I _O max,T _A = 25 °C	DC 20 MHz		60		mV _{p-p}	
SVR	Supply voltage rejection (ac)	f = 100/120 Hz sine w (SVR = 20 log (1 V _{p-p} /			60		dB	

 $^{1)}$ At $V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Miscellaneous

Characte	eristics	Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _{Omax} , V _I = 53 V	75	82		%
Pd	Power dissipation	I ₀ = I ₀ max, V ₁ = 53 V		0.55	0.84	W

28701- BMR 702 Rev. D © Flex, October 2023


PKV 5315 PI

Output

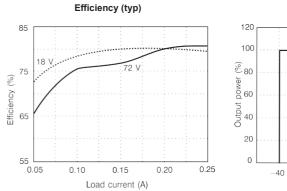
 T_A = +25°C, V_I = 18...72V unless otherwise specified.

Characte		Conditions			Output 1		
Characte	eristics	Conditions		min	typ	max	Unit
Vo	Output voltage tolerance band	I_0 =0.11.0 × I_{Omax} and long term drift		14.7		15.3	V
	Line regulation	I _O =I _{Omax}			30	75	mV
	Load regulation	Io =0.11.0 × Io max,	VI = 53 V		30	150	mV
t _{tr}	Load transient recovery time				300		μs
		y time $I_{O}= 0.1 \dots 1.0 \times I_{O} \max, V_{I} = 52$ load step = $0.5 \times I_{O} \max$ rature coefficient Measured after stabilization I_{O}= 0.1 \dots 1.0 \times I_{O} \max, 0.1 From			+200		mV
V _{tr}	Load transient voltage				-200		mV
T _{coeff}	Temperature coefficient	Measured after stabili	Measured after stabilization			±0.02	%/°C
tr	Ramp-up time	.0	$0.1 \dots 0.9 \times V_0$		1.2		ms
ts	Start-up time	$0.11.0 \times I_0$ max, V _I = 53 V	From V _I connection to V _O = $0.9 \times V_{OI}$		900	1300	ms
lo	Output current					0.2	А
P _O max	Max output power			3			W
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max		0.20		0.65	А
Isc	Short circuit current	VI =53 V			0.17		А
V _{O ac}	Output ripple & noise	I _O =I _O max,T _A = 25 °C	DC 20 MHz		60		mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100/120 Hz sine w (SVR = 20 log (1 V _{P-P} /			60		dB

 $^{1)}$ At $V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Characte	eristics	Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _{Omax} , V _I = 53 V	76	82		%
Pd	Power dissipation	$I_0 = I_0 max$, $V_1 = 53 V$		0.66	0.95	W

PKV 5222 PI


Output

Charact	Characteristics Conditions		Output 1			Output 2			Unit	
Charact	eristics	Conditions		min	typ	max	min	typ	max	Unit
Vo	Output voltage tolerance band	$I_0=0.11.0 \times I_{Omax}$ and long term drift		+4.9		+5.1	-4.9		-5.1	V
	Line regulation	I _O =I _{Omax}			10	25		10	25	mV
	Load regulation	$I_0 = 0.1 \dots 1.0 \times I_0 \text{ max}, V$	/ ₁ = 53 V		10	50		10	50	mV
t _{tr}	Load transient recovery time	I_0 = 0.1 1.0 × I_0 max, V_1 = 53 V load step = 0.5 × I_0 max			300			300		μs
V _{tr}	Lood transient veltage				+100			+100		mV
v _{tr}	Load transient voltage			-100			-100		mV	
T _{coeff}	Temperature coefficient	Measured after stabiliz	ation			±0.02			±0.02	%/°C
tr	Ramp-up time	lo=	$0.1 \dots 0.9 \times V_0$		1.2			1.2		ms
ts	Start-up time	0.11.0 × I _O max, V _I = 53 V	From V _i connection to V _O = $0.9 \times V_{Oi}$		900	1300		900	1300	ms
lo	Output current					0.25			0.25	А
P _O max	Max output power			1.25			1.25			W
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max	T _C < T _C max			0.81	0.25		0.81	A
I _{sc}	Short circuit current	VI =53 V			0.12			0.12		А
V _O ac	Output ripple & noise	Io =Io max, T _A = 25 °C	DC20 MHz		60			60		mV _{p-p}
SVR	Supply voltage rejection (ac)	f = 100/120 Hz sine wa (SVR = 20 log (1 V _{p-p} /V			45			45		dB

 T_A = +25°C, V_I = 18...72V unless otherwise specified.

 $^{1)}\,At~V_{out}\,{\leq}\,80\%$ of nominal the power module goes into hick up mode.

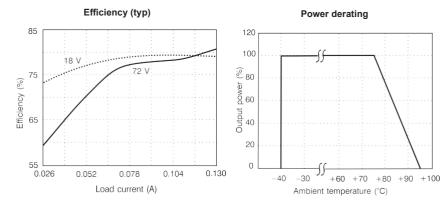
Miscellaneous

Ambient temperature (°C)

+60 +70 +80 +90 +100

-30

Characteristics		Conditions	min	min typ		Unit
η	Efficiency	$I_{O} = I_{Omax}, V_{I} = 53 V$	75	82		%
Pd	Power dissipation	I _O = I _O max, V _I = 53 V		0.55	0.83	W


PKV 5321 PI

Output

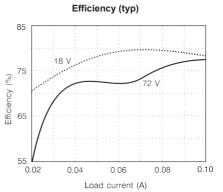
T_A = +25°C, V_I = 18...72V unless otherwise specified.

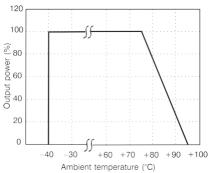
01		O and it is an a	Conditions		Output 1		Output 2				
Characteristics		Conditions	Conditions		typ	max	min	typ	max	Unit	
Vo	Output voltage tolerance band	$I_0=0.11.0 \times I_{Omax}$ and long term drift		+11.76		+12.24	-11.76		-12.24	V	
	Line regulation	I _O =I _{Omax}			24	60		24	60	mV	
	Load regulation	Io =0.11.0 × Io max, \	/ _I = 53 V		24	120		24	120	mV	
t _{tr}	Load transient recovery time				300			300		μs	
V		Io= 0.11.0 × Io max, \ load step = 0.5 × Io max			+150			+150		mV	
V _{tr}	Load transient voltage				-150			-150		mV	
T _{coeff}	Temperature coefficient	Measured after stabiliz	ation			±0.02			±0.02	%/°C	
tr	Ramp-up time	I _O =	$0.1 \dots 0.9 \times V_O$		1.2			1.2		ms	
ts	Start-up time	0.11.0 × I _O max, V _I = 53 V	From V _I connection to V _O = $0.9 \times V_{Oi}$		900	1300		900	1300	ms	
lo	Output current					0.125			0.125	А	
P _O max	Max output power			1.5			1.5			W	
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max		0.125		0.400	0.125		0.400	A	
Isc	Short circuit current	V1 =53 V			0.17			0.17		А	
V _{O ac}	Output ripple & noise	I _O =I _O max, T _A = 25 °C	DC20 MHz		60			60		mV _{p-p}	
SVR	Supply voltage rejection (ac)	f = 100/120 Hz sine wa (SVR = 20 log (1 V _{P-p} /V			45			45		dB	

 $^{1)}$ At $V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Characteristics		Conditions	min	typ	max	Unit	
η	Efficiency	$I_0 = I_{Omax}, V_I = 53 V$	73	82		%	
Pd	Power dissipation	$I_{O} = I_{O} max$, $V_{I} = 53 V$		0.66	1.11	W	

PKV 5325 PI

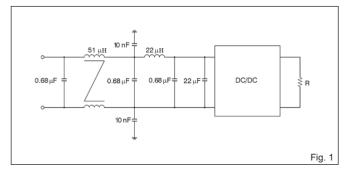

Output


Charact		Conditions		Output 1		Output 2			Unit	
Characteristics Conditions		Conditions		min	typ	max	min	typ	max	Unit
Vo	Output voltage tolerance band	$I_0=0.11.0 \times I_{Omax}$ and long term drift				+15.3	-14.7		-15.3	V
	Line regulation	I _O =I _{Omax}			30	75		30	75	mV
	Load regulation	Io =0.11.0 × Io max, \	/ ₁ = 53 V		30	150		30	150	mV
t _{tr}	Load transient recovery time	I₀= 0.11.0 × I₀ max, V₁ = 53 V Ioad step = 0.5 × I₀ max			300			300		μs
V _{tr}	Load transient voltage				+200			+200		mV
Vtr	Load transient voltage			-200	-200			-200		mV
T _{coeff}	Temperature coefficient	Measured after stabiliz	Measured after stabilization			±0.02			±0.02	%/°C
tr	Ramp-up time	lo=	$0.1 \dots 0.9 \times V_O$		1.2			1.2		ms
ts	Start-up time	0.11.0 × I _O max, V _I = 53 V	From V _i connection to V _O = $0.9 \times V_{Oi}$		900	1300		900	1300	ms
lo	Output current		•			0.1			0.1	А
P _O max	Max output power			1.5			1.5			W
l _{lim}	Current limiting threshold ¹⁾	T _C < T _C max		0.10		0.32	0.10		0.32	А
Isc	Short circuit current	VI =53 V			0.17			0.17		А
V _O ac	Output ripple & noise	Io =Io max, T _A = 25 °C	DC20 MHz		60			60		mV _{p-p}
SVR	Supply voltage rejection (ac)		f = 100/120 Hz sine wave, 1 V _{P-P} , (SVR = 20 log (1 V _{P-P} /V _{OP-P}))		45			45		dB

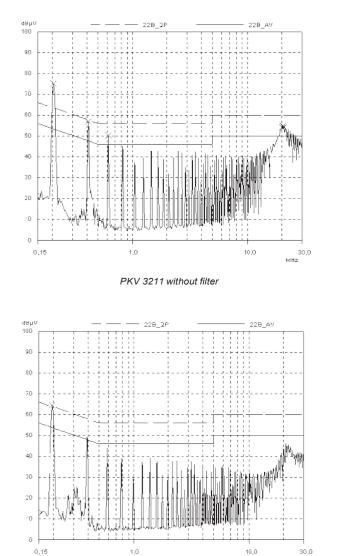
 T_A = +25°C, V_I = 18...72V unless otherwise specified.

 $^{1)}$ At $V_{out} \leq 80\%$ of nominal the power module goes into hick up mode.

Miscellaneous

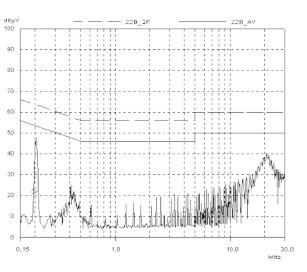


Characteristics		Conditions	min	typ	max	Unit
η	Efficiency	I _O = I _{Omax} , V _I = 53 V	76	82		%
P _d	Power dissipation	I ₀ = I ₀ max, V ₁ = 53 V		0.66	0.95	W

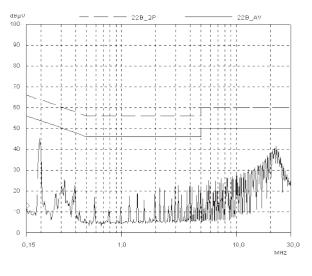

EMC Specifications

The PKV DC/DC power module is mounted on a double sided printed circuit board (PB) with groundplane during EMC measurements. The fundamental switching frequency is approx. 200 kHz.

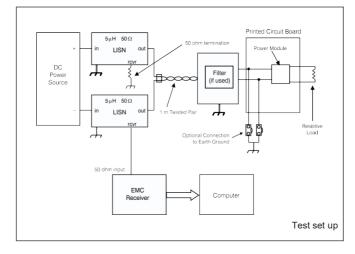
The PKV series has a good input filter and will only need a simple filter to meet conducted noise according to EN 55022 level B. Fig. 1 shows an example of filter and the results for this filter is shown below.



Conducted noise



PKV 5211 without filter


MHz

PKV 3211 with filter

PKV 5211 with filter

Miscellaneous

Soldering Information

The PKV Series DC/DC Converters are intended forthrough hole mounting in a PCB. When wave soldering is used, the temperature on the pins is specified to maximum 260 °C for maximum 10 seconds. Maximum preheat rate of 4 °C/s and temperature of max 150 °C is suggested. When hand soldering, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean (NC) flux is recommended to avoid entrapment of cleaning fluids in cavities inside of the DC/DC power module. The residues may affect long time reliability and isolation voltage.

External Decoupling Capacitors

When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle highfrequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. Ceramic capacitors will also reduce any high frequency noise at the load. It is equally important to use low resistance and low inductance PCB layouts and cabling.

External decoupling capacitors will become part of the control loop of the DC/DC converter and may affect the stability margins. As a "rule of thumb", 100 μ F/A of output current can be added without any additional analysis. The ESR of the capacitors is a very important parameter. Power Modules guarantee stable operation with a verified ESR value of > 10 mOhm across the output connections.

For further information please contact your local Flex representative.

Delivery Package Information

The PKV series DC/DC converters are delivered in tubes with a lenght of 384 mm (15.1 in)

Tube Specification

Material:	PVC
Max surface resistance:	10 to1000 MOhm/sq
Color:	Transparent
Capacity:	10 pcs/tube
Weight:	typ 160 g
End stops	Pins

Reliability

According to MIL-HDBK-217F the calculated MTBF value at 100% load (from PKV 5211 PI) at the following ambient temperatures will be approx.:

Tamb Hours

0 °C	2.7 million
10 °C	1.5 million
25 °C	650 000
40 °C	276 000
60 °C	88 000
75 °C	37 000

At 80–100% load the case temperature will be approx. 15–20 °C higher than the ambient temperature.

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex products are found in the Statement of Compliance document.

Flex fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The PKV series DC/DC converters are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000 and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out by a burn-in procedure.

Warranty

Warranty period and conditions are defined in Flex General Terms and Conditions of Sale.

Limitation of liability

Flex does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

© Flex 2023

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.

Product Program

Vi	V _o /I _o max	P _o max	Ordering No.
12/24 V	5 V/500 mA	2.5 W	PKV3211PI
	12 V/250 mA	3.0 W	PKV3313PI
	15 V/200 mA	3.0 W	PKV3315PI
	± 5 V/250 mA	2.5 W	PKV3222PI
	±12 V/125 mA	3.0 W	PKV3321PI
	±15 V/100 mA	3.0 W	PKV3325PI
48/60 V	5 V/500 mA	2.50 W	PKV 5211 PI
	15 V/200 mA	3.00 W	PKV 5315 PI
	± 5 V/250 mA	2.50 W	PKV 5222 PI
	±12 V/125 mA	3.00 W	PKV 5321 PI
	±15 V/100 mA	3.00 W	PKV 5325 PI

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Flex. These products are sold only according to Flex general conditions of sale, unless otherwise confirmed in writing.

Specifications subject to change without notice.

The latest and most complete information can be found on our website.

Datasheet

28701- BMR 702 Rev.D © Flex, October 2023 28701- BMR 702 Rev. D © Flex, October 2023